[1] Asmerom, Y., V. Polyak, S. Burns, et al., 2007: Solar forcing of Holocene climate: New insights from a speleothem record, southwestern United States. Geology, 35, 1–4. doi: 10.1130/G22865A.1
[2] Baker, A., E. Ito, P. L. Smart, et al., 1997: Elevated and variable values of 13C in speleothems in a British cave system. Chem. Geol., 136, 263–270. doi: 10.1016/S0009-2541(96)00129-5
[3] Baldini, J. U. L., F. McDermott, A. Baker, et al., 2005: Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England. Earth Planet. Sci. Lett., 240, 486–494. doi: 10.1016/j.jpgl.2005.09.022
[4] Berger, A., and M. F. Loutre, 1991: Insolation values for the climate of the last 10 million years. Quat. Sci. Rev., 10, 297–317. doi: 10.1016/0277-3791(91)90033-Q
[5] Breitenbach, S. F. M., K.Rehfeld, B. Goswami, et al., 2012: Constructing proxy records from age models (COPRA). Climate Past, 8, 1765–1779. doi: 10.5194/cp-8-1765-2012
[6] Cai, Y. J., L. C. Tan, H. Cheng, et al., 2010: The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet. Sci. Lett., 291, 21–31. doi: 10.1016/j.jpgl.2009.12.039
[7] Chen, H., S. L. Guo, C. Y. Xu, et al., 2007: Historical temporal trends of hydro-climatic variables and runoff response to climate variability and their relevance in water resource management in the Hanjiang Basin. J. Hydrol., 344, 171–184. doi: 10.1016/j.jhydrol.2007.06.034
[8] Chen, W., 2002: Impacts of El Niño and La Niña on the cycle of the East Asian winter and summer monsoon. Chinese J. Atmos. Sci., 26, 595–610. (in Chinese)
[9] Chen, W., J. Feng, and R. G. Wu, 2013: Roles of ENSO and PDO in the link of the East Asian winter monsoon to the following summer monsoon. J. Climate, 26, 622–635. doi: 10.1175/JCLI-D-12-00021.1
[10] Cheng, B., J. Adams, J. H. Chen, et al., 2020: Neoglacial trends in diatom dynamics from a small alpine lake in the Qinling mountains of central China. Climate Past, 16, 543–554. doi: 10.5194/cp-16-543-2020
[11] Cheng, H., R. L. Edwards, A. Sinha, et al., 2016: The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534, 640–646. doi: 10.1038/nature18591
[12] Chu, G. Q., Q. Sun, X. H. Wang, et al., 2008: Snow anomaly events from historical documents in eastern China during the past two millennia and implication for low-frequency variability of AO/NAO and PDO. Geophys. Res. Lett., 35, L14806. doi: 10.1029/2008GL034475
[13] Cook, E. R., K. J. Anchukaitis, M. B. Buckley, et al., 2010: Asian monsoon failure and megadrought during the last millennium. Science, 328, 486–489. doi: 10.1126/science.1185188
[14] Cosford, J., H. R. Qing, B. Eglington, et al., 2008: East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from eastern China. Earth Planet. Sci. Lett., 275, 296–307. doi: 10.1016/j.jpgl.2008.08.018
[15] Cosford, J., H. R. Qing, D. Mattey, et al., 2009: Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 280, 235–244. doi: 10.1016/j.palaeo.2009.05.020
[16] Cui, Y. F., Y. J. Wang, H. Cheng, et al., 2012: Isotopic and lithologic variations of one precisely-dated stalagmite across the Medieval/LIA period from Heilong Cave, central China. Climate Past, 8, 1541–1550. doi: 10.5194/cp-8-1541-2012
[17] Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142. doi: 10.1007/s00703-005-0125-z
[18] Ding, Y. H., D. Si, Y. J. Liu, et al., 2018: On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon. Chinese J. Atmos. Sci., 42, 533–558. (in Chinese) doi: 10.3878/j.issn.1006-9895.1712.17261
[19] Dong, J. G., Y. J. Wang, H. Cheng, et al., 2010: A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China. Holocene, 20, 257–264. doi: 10.1177/0959683609350393
[20] Donnelly, J. P., and J. D. Woodruff, 2007: Intense hurricane activity over the past 5,000 years controlled by El Niño and the West African monsoon. Nature, 447, 465–468. doi: 10.1038/nature05834
[21] Dorale, J. A., and Z. H. Liu, 2009: Limitations of Hendy test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. J. Cave Karst Stud., 71, 73–80.
[22] Dorale, J. A., R. L. Edwards, E. Ito, et al., 1998: Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice Cave, Missouri, USA. Science, 282, 1871–1874. doi: 10.1126/science.282.5395.1871
[23] Editorial Committee of Chinese Military History, 1985: Tabulation of Wars in Ancient China. People’s Liberation Army Press, Beijing, 150–151. (in Chinese)
[24] Emile-Geay, J., M. Cane, R. Seager, et al., 2007: El Niño as a mediator of the solar influence on climate. Paleoceanography, 22, PA3210. doi: 10.1029/2006PA001304
[25] Fairchild, I. J., C. L. Smith, A. Baker, et al., 2006: Modification and preservation of environmental signals in speleothems. Earth Sci. Rev., 75, 105–153. doi: 10.1016/j.earscirev.2005.08.003
[26] Foukal, P., C. Fröhlich, H. Spruit, et al., 2006: Variations in solar luminosity and their effect on the Earth’s climate. Nature, 443, 161–166. doi: 10.1038/nature05072
[27] Gray, L. J., J. Beer, M. Geller, et al., 2010: Solar influences on climate. Rev. Geophys., 48, RG4001. doi: 10.1029/2009RG000282
[28] Hendy, C. H., 1971: The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as palaeoclimatic indicators. Geochim. Cosmochim. Acta, 35, 801–824. doi: 10.1016/0016-7037(71)90127-X
[29] Hu, C. Y., G. M. Henderson, J. H. Huang, et al., 2008: Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett., 266, 221–232. doi: 10.1016/j.jpgl.2007.10.015
[30] IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Reportof the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
[31] Ishimura, T., U. Tsunogai, and F. Nakagawa, 2008: Grain-scale heterogeneities in the stable carbon and oxygen isotopic compositions of the international standard calcite materials (NBS 19, NBS 18, IAEA-CO-1, and IAEA-CO-8). Rapid Commun. Mass Spectrom., 22, 1925–1932. doi: 10.1002/rcm.3571
[32] Li, D. L., Z. N. Xiao, and L. Zhao, 2019: Preferred solar signal and its transfer in the Asian-Pacific subtropical jet region. Climate Dyn., 52, 5173–5187. doi: 10.1007/s00382-018-4443-5
[33] Li, P., M. H. Zhang, X. G. Kong, et al., 2010: A stalagmite-record of East Asian summer monsoon in the last 2000 years and its correlation with historical records. Mar. Geol. Quat. Geol., 30, 201–208. (in Chinese) doi: 10.3724/SP.J.1140.2010.04201
[34] Li, X. L., X. P. Cui, D. He, et al., 2018: Evaluation of the Heshang Cave stalagmite calcium isotope composition as a paleohydrologic proxy by comparison with the instrumental precipitation record. Sci. Rep., 8, 2615. doi: 10.1038/s41598-018-20776-5
[35] Li, Y. P., C. M. Ma, B. Zhou, et al., 2016: Environmental processes derived from peatland geochemistry since the last deglaciation in Dajiuhu, Shennongjia, central China. Boreas, 45, 423–438. doi: 10.1111/bor.12168
[36] Ma, C. M., C. Zhu, C. G. Zheng, et al., 2008: High-resolution geochemistry records of climate changes since late-glacial from Dajiuhu peat in Shennongjia Mountains, Central China. Chinese Sci. Bull., 53, 28–41. doi: 10.1007/s11434-008-5007-6
[37] Maher, B. A., and R. Thompson, 2012: Oxygen isotopes from Chinese caves: Records not of monsoon rainfall but of circulation regime. J. Quat. Sci., 27, 615–624. doi: 10.1002/jqs.2553
[38] Mann, M. E., and P. D. Jones, 2003: Global surface temperatures over the past two millennia. Geophys. Res. Lett., 30, 1820. doi: 10.1029/2003GL017814
[39] Mann, M. E., Z. H. Zhang, S. Rutherford, et al., 2009: Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly. Science, 326, 1256–1260. doi: 10.1126/science.1177303
[40] Mantua, N. J., S. R. Hare, Y. Zhang, et al., 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1080. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
[41] Mattey, D., D. Lowry, J. Duffet, et al., 2008: A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation. Earth Planet. Sci. Lett., 269, 80–95. doi: 10.1016/j.jpgl.2008.01.051
[42] Mayewski, P. A., L. D. Meeker, M. S. Twickler, et al., 1997: Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year-long glaciochemical series. J. Geophys. Res. Oceans, 102, 26345–26366. doi: 10.1029/96JC03365
[43] McDermott, F., 2004: Palaeo-climate reconstruction from stable isotope variations in speleothems: A review. Quat. Sci. Rev., 23, 901–918. doi: 10.1016/j.quascirev.2003.06.021
[44] Meehl, G. A., P. R. Gent, J. M. Arblaster, et al., 2001: Factors that affect the amplitude of El Niño in global coupled climate models. Climate Dyn., 17, 515–526. doi: 10.1007/PL00007929
[45] Meehl, G. A., J. M. Arblaster, K. Matthes, et al., 2009: Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science, 325, 1114–1118. doi: 10.1126/science.1172872
[46] Moy, C. M., G. O. Seltzer, D. T. Rodbell, et al., 2002: Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420, 162–165. doi: 10.1038/nature01194
[47] Mudelsee, M., 2003: Estimating Pearson’s correlation coefficient with bootstrap confidence interval from serially dependent time series. Math. Geol., 35, 651–665. doi: 10.1023/B:MATG.0000002982.52104.02
[48] Neff, U., S. J. Burns, A. Mangini, et al., 2001: Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411, 290–293. doi: 10.1038/35077048
[49] Rasmusson, E. M., and T. H. Carpenter, 1983: The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon. Wea. Rev., 111, 517–528. doi: 10.1175/1520-0493(1983)111<0517:TRBEEP>2.0.CO;2
[50] Ropelewski, C. F., and M. S. Halpert, 1996: Quantifying Southern Oscillation–precipitation relationships. J. Climate, 9, 1043–1059. doi: 10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2
[51] Shao, Q. F., C. H. Li, M. J. Huang, et al., 2019: Interactive programs of MC-ICPMS data processing for 230Th/U geochronology. Quat. Geochronol., 51, 43–52. doi: 10.1016/j.quageo.2019.01.004
[52] Shen, C. M., W. C. Wang, W. Gong, et al., 2006: A Pacific decadal oscillation record since 1470 AD reconstructed from proxy data of summer rainfall over eastern China. Geophys. Res. Lett., 33, L03702. doi: 10.1029/2005GL024804
[53] Shi, H., and B. Wang, 2019: How does the Asian summer precipitation–ENSO relationship change over the past 544 years? Climate Dyn., 52, 4583–4598. doi: 10.1007/s00382-018-4392-z
[54] Solanki, S. K., I. G. Usoskin, B. Kromer, et al., 2004: Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature, 431, 1084–1087. doi: 10.1038/nature02995
[55] Spötl, C., I. J. Fairchild, and A. F. Tooth, 2005: Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves. Geochim. Cosmochim. Acta, 69, 2451–2468. doi: 10.1016/j.gca.2004.12.009
[56] Steinhilber, F., J. Beer, and C. Fröhlich, 2009: Total solar irradiance during the Holocene. Geophys. Res. Lett., 36, L19704. doi: 10.1029/2009GL040142
[57] Stuiver, M., and B. Becker, 1993: High-precision decadal calibration of the radiocarbon time scale, AD 1950–6000 BC. Radiocarbon, 35, 35–65. doi: 10.1017/S0033822200013801
[58] Tan, L. C., Y. J. Cai, Z. S. An, et al., 2011: Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye Cave. Holocene, 21, 287–296. doi: 10.1177/0959683610378880
[59] Tan, L. C., Y. J. Cai, H. Cheng, et al, 2018a: Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years. Earth Planet. Sci. Lett., 482, 580–590. doi: 10.1016/j.jpgl.2017.11.044
[60] Tan, L. C., Y. J. Cai, H. Cheng, et al, 2018b: High resolution monsoon precipitation changes on southeastern Tibetan Plateau over the past 2300 years. Quat. Sci. Rev., 195, 122–132. doi: 10.1016/j.quascirev.2018.07.021
[61] Tan, M., 2014: Circulation effect: Response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Climate Dyn., 42, 1067–1077. doi: 10.1007/s00382-013-1732-x
[62] Taylor, W. A., 2000: Change-Point Analysis: A Powerful New Tool for Detecting Changes. Available online at http://www.variation.com/cpa/tech/changepoint.html.
[63] van Loon, H., and G. A. Meehl, 2012: The Indian summer monsoon during peaks in the 11 year sunspot cycle. Geophys. Res. Lett., 39, L13701. doi: 10.1029/2012GL051977
[64] Wang, B., and L. Ho, 2002: Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15, 386–396. doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
[65] Wang, J. S., and L. Zhao, 2012: Statistical tests for a correlation between decadal variation in June precipitation in China and sunspot number. J. Geophys. Res.Atmos., 117, D23117. doi: 10.1029/2012JD018074
[66] Wang, Y. J., H. Cheng, R. L. Edwards, et al., 2005: The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308, 854–857. doi: 10.1126/science.1106296
[67] Wei, K., W. Chen, L. Y. Xu, et al., 2020: Stratosphere amplifies the global climate effect of wildfires. Sci. China Earth Sci., 63, 309–311. doi: 10.1007/s11430-019-9560-3
[68] Wu, W. X., and T. S. Liu, 2004: Possible role of the “Holocene Event 3” on the collapse of Neolithic cultures around the Central Plain of China. Quat. Int., 117, 153–166. doi: 10.1016/S1040-6182(03)00125-3
[69] Xiao, Z. N., and W. J. Huo, 2016: Influences of Solar Activity on Climate: The spatio-temporal selectivity of the amplification process. Adv. Meteor. Sci. Technol., 6, 141–147. (in Chinese) doi: 10.3969/j.issn.2095-1973.2016.03.019
[70] Xu, D. K., H. Y. Lu, G. Q. Chu, et al., 2019: Synchronous 500-year oscillations of monsoon climate and human activity in Northeast Asia. Nat. Commun., 10, 4105. doi: 10.1038/s41467-019-12138-0
[71] Yancheva, G., N. R. Nowaczyk, J. Mingram, et al., 2007: Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445, 74–77. doi: 10.1038/nature05431
[72] Yu, L., 2013: Potential correlation between the decadal East Asian summer monsoon variability and the Pacific decadal oscillation. Atmos. Ocean. Sci. Lett., 6, 394–397. doi: 10.3878/j.issn.1674-2834.13.0040
[73] Yu, L., T. Furevik, O. H. Otterå, et al., 2015: Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: A comparison of observations to 600-years control run of Bergen Climate Model. Climate Dyn., 44, 475–494. doi: 10.1007/s00382-014-2141-5
[74] Zhang, H. L., K. F. Yu, J. X. Zhao, et al., 2013: East Asian Summer Monsoon variations in the past 12.5 ka: High-resolution δ18O record from a precisely dated aragonite stalagmite in central China. J. Asian Earth Sci., 73, 162–175. doi: 10.1016/j.jseaes.2013.04.015
[75] Zhang, J. W., S. S. Liu, D. B. Liu, et al., 2019: Correlation between oxygen and carbon isotopes of speleothems from Tian’e Cave, central China: Insights into the phase relationship between Asian summer and winter monsoons. J. Asian Earth Sci., 180, 103884. doi: 10.1016/j.jseaes.2019.103884
[76] Zhang, J. W., X. G. Kong, K. Zhao, et al., 2020: Centennial-scale climatic changes in Central China during the Holocene climatic optimum. Palaeogeogr. Palaeoclimatol. Palaeoecol., 558, 109950. doi: 10.1016/j.palaeo.2020.109950
[77] Zhang, P. Z., H. Cheng, R. L. Edwards, et al., 2008: A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 322, 940–942. doi: 10.1126/science.1163965
[78] Zhang, W. C., H. Yan, J. Dodson, et al., 2018: The 9.2 ka event in Asian summer monsoon area: The strongest millennial scale collapse of the monsoon during the Holocene. Climate Dyn., 50, 2767–2782. doi: 10.1007/s00382-017-3770-2
[79] Zhang, W. H., S. T. Chen, Y. J. Wang, et al., 2019: Rapid change in the East Asian summer monsoon: Stalagmite records in Hubei, China. Quat. Res., 39, 765–774. (in Chinese) doi: 10.11928/j.issn.1001-7410.2019.03.21
[80] Zhao, K., Y. J. Wang, R. L. Edwards, et al., 2016: Contribution of ENSO variability to the East Asian summer monsoon in the late Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol., 449, 510–519. doi: 10.1016/j.palaeo.2016.02.044
[81] Zhao, L., Y. X. Zhu, H. W. Liu, et al., 2016: A stable snow–atmosphere coupled mode. Climate Dyn., 47, 2085–2104. doi: 10.1007/s00382-015-2952-z
[82] Zhao, L., J. S. Wang, H. W. Liu, et al., 2017: Amplification of the solar signal in the summer monsoon rainband in China by synergistic actions of different dynamical responses. J. Meteor. Res., 31, 61–72. doi: 10.1007/s13351-016-6046-6
[83] Zhou, Q., and W. Chen, 2012: Influence of the 11-year solar cycle on the evolution of ENSO-related SST anomalies and rainfall anomalies in East Asia. Chinese J. Atmos. Sci., 36, 851–862. (in Chinese) doi: 10.3878/j.issn.1006-9895.2011.11162
[84] Zhu, Z. M., J. M. Feinberg, S. C. Xie, et al., 2017: Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China. Proc. Natl. Acad. Sci. USA, 114, 852–857. doi: 10.1073/pnas.1610930114