[1] Baret, F., J. G. P. W. Clevers, and M. D. Steven, 1995: The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches. Remote Sens. Environ., 54, 141–151. doi: 10.1016/0034-4257(95)00136-O
[2] Blackburn, G. A., 1998: Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sens. Environ., 66, 273–285. doi: 10.1016/S0034-4257(98)00059-5
[3] Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 1533–1543. doi: 10.1080/014311698215333
[4] Han, X. Z., F. Wang, and Y. Han, 2019: Fengyun-3D MERSI true color imagery developed for environmental applications. J. Meteor. Res., 33, 914–924. doi: 10.1007/s13351-019-9028-7
[5] Huete, A., C. Justice, and W. Van Leeuwen, 1999: MODIS Vegetation Index (MOD13) Algorithm Theoretical Basis Document. University of Virginia, Charlottesville, VA, 15–61 pp.
[6] Jacquemoud, S., C. Bacour, H. Poilvé, et al., 2000: Comparison of four radiative transfer models to simulate plant canopies reflectance: Direct and inverse mode. Remote Sens. Environ., 74, 471–481. doi: 10.1016/S0034-4257(00)00139-5
[7] Myneni, R. B., C. D. Keeling, C. J. Tucker, et al., 1997a: Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702. doi: 10.1038/386698a0
[8] Myneni, R. B., R. Ramakrishna, R. Nemani, et al., 1997b: Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Remote Sens., 35, 1380–1393. doi: 10.1109/36.649788
[9] Rouse, J. W., R. H. Haas, J. A. Schell, et al., 1973: Monitoring vegetation systems in the Great Plains with ERTS. Third ERTS Symposium, NASA SP-351 I, 309–317 pp.
[10] Saunders, R. W., and K. T. Kriebel, 1988: An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9, 123–150. doi: 10.1080/01431168808954841
[11] Sims, D. A., A. F. Rahman, V. D. Cordova, et al., 2006: On the use of MODIS EVI to assess gross primary productivity of North American ecosystems. J. Geophys. Res. Biogeo., 111, G04015. doi: 10.1029/2006JG000162
[12] Stroppiana, D., S. Pinnock, and J. M. Gregoire, 2000: The global fire product: Daily fire occurrence from April 1992 to December 1993 derived from NOAA AVHRR data. Int. J. Remote Sens., 21, 1279–1288. doi: 10.1080/014311600210173
[13] Vermote, E. F., D. Tanré, J. L. Deuzé, et al., 1997: Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens., 35, 675–686. doi: 10.1109/36.581987
[14] Wang, J., X. G. Xu, S. G. Ding, et al., 2014: A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R. J. Quant. Spectrosc. Radiat. Transfer, 146, 510–528. doi: 10.1016/j.jqsrt.2014.03.020
[15] Waterman, P. C., 1965: Matrix formulation of electromagnetic scattering. Proc. IEEE, 53, 805–812. doi: 10.1109/PROC.1965.4058
[16] Xu, N., X. H. Niu, X. Q. Hu, et al., 2018: Prelaunch calibration and radiometric performance of the advanced MERSI Ⅱ on FengYun-3D. IEEE Trans. Geosci. Remote Sens., 56, 4866–4875. doi: 10.1109/TGRS.2018.2841827
[17] Zeng, X. B., R. E. Dickinson, A. Walker, et al., 2000: Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteor., 39, 826–839. doi: 10.1175/1520-0450(2000)039<0826:DAEOGK>2.0.CO;2