[1] Ahmadov, R., C. Gerbig, R. Kretschmer, et al., 2007: Mesoscale covariance of transport and CO2 fluxes: Evidence from observations and simulations using the WRF-VPRM coupled atmosphere–biosphere model. J. Geophys. Res, 112, D22107. doi: 10.1029/2007JD008552
[2] Ahmadov, R., C. Gerbig, R. Kretschmer, et al., 2009: Comparing high resolution WRF-VPRM simulations and two global CO2 transport models with coastal tower measurements of CO2. Biogeosciences, 6, 807–817. doi: 10.5194/bg-6-807-2009
[3] Ballav, S., P. K. Patra, M. Takigawa, et al., 2012: Simulation of CO2 concentration over East Asia using the regional transport model WRF-CO2. J. Meteor. Soc. Japan, 90, 959–976. doi: 10.2151/jmsj.2012-607
[4] Ballav, S., P. K. Patra, Y. Sawa, et al., 2016: Simulation of CO2 concentrations at Tsukuba tall tower using WRF-CO2 tracer transport model. J. Earth Syst. Sci., 125, 47–64. doi: 10.1007/s12040-015-0653-y
[5] Chaudhari, P. R., D. G. Gajghate, S. Dhadse, et al., 2007: Monitoring of environmental parameters for CO2 sequestration: A case study of Nagpur City, India. Environ. Monit. Assess., 135, 281–290. doi: 10.1007/s10661-007-9649-7
[6] Cheng, Y. L., X. Q. An, F. H. Yun, et al., 2013: Simulation of CO2 variations at Chinese background atmospheric monitoring stations between 2000 and 2009: Applying a CarbonTracker model. Chinese. Sci. Bull., 58, 3986–3993. doi: 10.1007/s11434-013-5895-y
[7] Chevillard, A., U. Karstens, P. Ciais, et al., 2002: Simulation of atmospheric CO2 over Europe and western Siberia using the regional scale model REMO. Tellus B, 54, 872–894. doi: 10.3402/tellusb.v54i5.16737
[8] Collins, W. D., P. J. Rasch, B. A. Boville, et al., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). National Center for Atmospheric Research, Boulder, Colo-rado, USA, 210 pp.
[9] Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model. Colo-rado, National Center for Atmospheric Research, Climate and Global Dynamics Division, 69 pp.
[10] Dlugokencky, E., and P. Tans, 2017: Trends in Atmospheric Carbon Dioxide. Earth System Research Laboratory, National Oceanic and Atmospheric Administration (NOAA/ESRL). Available at www.esrl.noaa.gov/gmd/ccgg/trends/global.html. Accessed on 8 May 2018.
[11] Dudhia, J., D. Gill, K. Manning, et al., 2004: PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3. Boulder, National Center for Atmospheric Research, 390 pp.
[12] Elguindi, N., X. Q. Bi, F. Giorgi, et al., 2010: RegCM Version 4.0 User’s Guide. ICTP, Trieste, Italy, 24 pp.
[13] Feng, L., P. I. Palmer, Y. Yang, et al., 2011: Evaluating a 3-D transport model of atmospheric CO2 using ground-based, aircraft, and space-borne data. Atmos. Chem. Phys., 11, 2789–2803. doi: 10.5194/acp-11-2789-2011
[14] Ge, C., M. G. Zhang, L. Y. Zhu, et al., 2011: Simulated seasonal variations in wet acid depositions over East Asia. J. Air Waste Manag. Assoc., 61, 1246–1261. doi: 10.1080/10473289.2011.596741
[15] Giorgi, F., J. S. Pal, X. Bi, et al., 2006: Introduction to the TAC special issue: The RegCNET network. Theor. Appl. Climatol., 86, 1–4. doi: 10.1007/s00704-005-0199-z
[16] Giorgi, F., E. Coppola, F. Solmon, et al., 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 7–29. doi: 10.3354/cr01018
[17] Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764–787. doi: 10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
[18] Grell, G. A., J. Dudhia, and D. Stauffer, 1994: A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5).NCAR Technical Note NCAR/TN-398+STR, Boulder, Colo-rado, NCAR, 128 pp, doi: 10.5065/D60Z 716B.
[19] Guan, D. B., G. P. Peters, C. L. Weber, et al., 2009: Journey to world top emitter: An analysis of the driving forces of China’s recent CO2 emissions surge. Geophys. Res. Lett., 36, L04709. doi: 10.1029/2008gl036540
[20] Holtslag, A. A. M., E. I. F. De Bruijn, and H. L. Pan, 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 1561–1575. doi: 10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2
[21] Huang, X. X., T. J. Wang, R. Talbot, et al., 2015: Temporal characteristics of atmospheric CO2 in urban Nanjing, China. Atmos. Res., 153, 437–450. doi: 10.1016/j.atmosres.2014.09.007
[22] Iacono, M. J., E. J. Mlawer, S. A. Clough, et al., 2000: Impact of an improved longwave radiation model, RRTM, on the energy budget and thermodynamic properties of the NCAR community climate model, CCM3. J. Geophys. Res., 105, 14873–14890. doi: 10.1029/2000JD900091
[23] Kiehl, J. T., and V. Ramanathan, 1983: CO2 radiative parameterization used in climate models: Comparison with narrow band models and with laboratory data. J. Geophys. Res., 88, 5191–5202. doi: 10.1029/JC088iC09p05191
[24] Kiehl, J. T., J. J. Hack, G. B. Bonan, et al., 1996: Description of the NCAR Community Climate Model (CCM3). NCAR/TN-420+STR, Boulder, Colorado, National Center for Atmospheric Research, 55–60, doi: 10.5065/D6FF3Q99.
[25] Kou, X. X., M. G. Zhang, and Z. Peng, 2013: Numerical simulation of CO2 concentrations in East Asia with RAMS-CMAQ. Atmos. Ocean. Sci. Lett., 6, 179–184. doi: 10.3878/j.issn.1674-2834.13.0022
[26] Kou, X. X., M. G. Zhang, Z. Peng, et al., 2015: Assessment of the biospheric contribution to surface atmospheric CO2 concentrations over East Asia with a regional chemical transport model. Adv. Atmos. Sci., 32, 287–300. doi: 10.1007/s00376-014-4059-6
[27] Kou, X. X., X. J. Tian, M. G. Zhang, et al., 2017: Accounting for CO2 variability over East Asia with a regional joint inversion system and its preliminary evaluation. J. Meteor. Res., 31, 834–851. doi: 10.1007/s13351-017-6149-8
[28] Krol, M., S. Houweling, B. Bregman, et al., 2005: The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5, 417–432. doi: 10.5194/acp-5-417-2005
[29] Lau, C. C. S., J. C. Lam, and L. Yang, 2007: Climate classification and passive solar design implications in China. Energy Convers. Manage., 48, 2006–2015. doi: 10.1016/j.enconman.2007.01.004
[30] Liu, L. X., L. X. Zhou, X. C. Zhang, et al., 2009: The characteristics of atmospheric CO2 concentration variation of four national background stations in China. Sci. China Ser. D Earth Sci., 52, 1857–1863. doi: 10.1007/s11430-009-0143-7
[31] Masarie, K. A., and P. P. Tans, 1995: Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res., 100, 11593–11610. doi: 10.1029/95JD00859
[32] Nassar, R., D. B. A. Jones, P. Suntharalingam, et al., 2010: Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species. Geosci. Model Dev., 3, 689–716. doi: 10.5194/gmd-3-689-2010
[33] Oleson, K. W., G. Y. Niu, Z. L. Yang, et al., 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021. doi: 10.1029/2007JG000563
[34] Olivier, J. G. J., G. Janssens-Maenhout, M. Muntean, et al., 2015: Trends in Global CO2 Emissions: 2015 Report. The Hague, PBL Netherlands Environmental Assessment Agency, 80 pp.
[35] Peters, W., A. R. Jacobson, C. Sweeney, et al., 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA, 104, 18925–18930. doi: 10.1073/pnas.0708986104
[36] Pillai, D., C. Gerbig, R. Ahmadov, et al., 2011: High-resolution simulations of atmospheric CO2 over complex terrain-representing the Ochsenkopf mountain tall tower. Atmos. Chem. Phys., 11, 7445–7464. doi: 10.5194/acp-11-7445-2011
[37] Sahay, S., and C. Ghosh, 2013: Monitoring variation in greenhouse gases concentration in urban environment of Delhi. Environ. Monit. Assess., 185, 123–142. doi: 10.1007/s10661-012-2538-8
[38] Stocker, T., D. Qin, G. Plattner, et al., 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom, New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324.
[39] Uppala, S., D. Dee, S. Kobayashi, et al., 2008: Towards a climate data assimilation system: Status update of ERA-Interim. ECMWF Newsletter, 115, 12–18. doi: 10.21957/byinox4wot
[40] Wang, H. J., and J. W. Liu, 2008: Global Change and Human Adaptation. China Forestry Press, Beijing, 347 pp. (in Chinese)
[41] World Meteorological Organization, 2017: WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2015. Switzerland, WMO, 8 pp.
[42] Yang, C. Y., H. J. Wang, S. J. Han, et al., 2012: Climate simulation for dynamic heterogeneous distribution of atmospheric CO2 concentration. Chinese J. Geophys., 55, 2809–2825. (in Chinese) doi: 10.6038/j.issn.0001-5733.2012.09.001