[1] Abhik, S., R. P. M. Krishna, M. Mahakur, et al., 2017: Revised cloud processes to improve the mean and intraseasonal variability of Indian summer monsoon in climate forecast system: Part 1. J. Adv. Model Earth Syst., 9, 1002–1029. doi: 10.1002/2016ms000819
[2] Brás, T. A., J. Seixas, N. Carvalhais, et al., 2021: Severity of drought and heatwave crop losses tripled over the last five decades in Europe. Environ. Res. Lett., 16, 065012. doi: 10.1088/1748-9326/abf004
[3] Cao, X., T. Li, M. Peng, et al., 2014: Effects of monsoon trough intraseasonal oscillation on tropical cyclogenesis over the western North Pacific. J. Atmos. Sci., 71, 4639–4660. doi: 10.1175/JAS-D-13-0407.1
[4] Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585. doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
[5] Ching, L., C.-H. Sui, M.-J. Yang, et al., 2015: A modeling study on the effects of MJO and equatorial Rossby waves on tropical cyclone genesis over the western North Pacific in June 2004. Dyn. Atmos. Oceans, 72, 70–87. doi: 10.1016/j.dynatmoce.2015.10.002
[6] CMA, 2021: Blue Book on Climate Change in China (2021). Science Press, Beijing, 109 pp. (in Chinese)
[7] Collins, W., P. J. Rasch, B. A. Boville, et al., 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note NCAR/TN-464+STR. University Corporation for Atmospheric Research, Boulder, 214 pp, doi: 10.5065/D63N21CH.
[8] Feng, L., T. Li, and W. D. Yu, 2014: Cause of severe droughts in Southwest China during 1951–2010. Climate Dyn., 43, 2033–2042. doi: 10.1007/s00382-013-2026-z
[9] Gao, M. N., J. Yang, B. Wang, et al., 2018: How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation? Climate Dyn., 51, 4421–4437. doi: 10.1007/s00382-017-3526-z
[10] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China, 2017: Grades of Meteorological Drought. GB/T 20481-2017. Standards Press of China, Beijing, 24 pp. (in Chinese)
[11] Hao, Z. C., F. H. Hao, Y. L. Xia, et al., 2019: A monitoring and prediction system for compound dry and hot events. Environ. Res. Lett., 14, 114034. doi: 10.1088/1748-9326/AB4DF5
[12] Hersbach, H., B. Bell, P. Berrisford, et al., 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049. doi: 10.1002/qj.3803
[13] Hong, J. L., Z. J. Ke, Y. Yuan, et al., 2021: Boreal summer intraseasonal oscillation and its possible impact on precipitation over southern China in 2019. J. Meteor. Res., 35, 571–582. doi: 10.1007/s13351-021-0189-9
[14] Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
[15] Huang, Y., T. G. Xiao, and R. H. Jin, 2019: Effects of low-frequency oscillation on the persistent extreme precipitation in Sichuan Basin. J. Appl. Meteor. Sci., 30, 93–104. (in Chinese) doi: 10.11898/1001-7313.20190109
[16] IPCC, 2021: Summary for policymakers. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, P. Zhai, A. Pirani, et al., Eds., Cambridge University Press, New York, 40 pp.
[17] Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
[18] Janjić, Z. I., 2000: Comments on “Development and evaluation of a convection scheme for use in climate models”. J. Atmos. Sci., 57, 3686. doi: 10.1175/1520-0469(2000)057<3686:CODAEO>2.0.CO;2
[19] Janjić, Z. I., 2002: Nonsingular Implementation of the Mellor–Yamada Level 2.5 Scheme in the NCEP Meso Model. NCEP Office Note, 437. National Centers for Environmental Prediction, College Park, 61pp.
[20] Li, C. Y., M. Q. Mu, and Z. X. Long, 2003: Influence of intraseasonal oscillation on East-Asian summer monsoon. J. Meteor. Res., 17, 130–142.
[21] López-Moreno, J. I., S. M. Vicente-Serrano, E. Morán-Tejeda, et al., 2011: Effects of the North Atlantic Oscillation (NAO) on combined temperature and precipitation winter modes in the Mediterranean mountains: Observed relationships and projections for the 21st century. Global Planet. Change, 77, 62–76. doi: 10.1016/j.gloplacha.2011.03.003
[22] Mao, J. Y., and G. X. Wu, 2006: Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer. Climate Dyn., 27, 815–830. doi: 10.1007/s00382-006-0164-2
[23] NDRCC, 2018: Basic situation of natural disasters in July 2018. Available online at http://www.ndrcc.org.cn/zqtj/395.jhtml. Accessed on 27 December 2021.
[24] Qi, X., J. Yang, M. N. Gao, et al., 2019: Roles of the tropical/extratropical intraseasonal oscillations on generating the heat wave over Yangtze River Valley: A numerical study. J. Geophys. Res. Atmos., 124, 3110–3123. doi: 10.1029/2018JD029868
[25] Ralph, F. M., P. J. Neiman, G. N. Kiladis, et al., 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical––Extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 1169–1189. doi: 10.1175/2010MWR3596.1
[26] Samanta, D., M. K. Dash, B. N. Goswami, et al., 2016: Extratropical anticyclonic Rossby wave breaking and Indian summer monsoon failure. Climate Dyn., 46, 1547–1562. doi: 10.1007/s00382-015-2661-7
[27] Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2019: A Description of the Advanced Research WRF Version 4. NCAR Tech. Note NCAR/TN-556+STR, National Center for Atmospheric Research, Boulder, 145 pp.
[28] Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627. doi: 10.1175/1520-0469(2001)058<0608:AFOAPI>2.0.CO;2
[29] Thornthwaite, C. W., 1948: An approach toward a rational classification of climate. Soil Sci., 66, 77. doi: 10.1097/00010694-194807000-00007
[30] Wang, H. L. and L. F. Liao, 2015: WRF model’s simulation study on the drought in Southwest China. J. Guizhou Meteor., 39, 1–5. (in Chinese) doi: 10.3969/j.issn.1003-6598.2015.06.001
[31] Wang, L., T. Li, T. J. Zhou, et al., 2013: Origin of the intraseasonal variability over the North Pacific in boreal summer. J. Climate, 26, 1211–1229. doi: 10.1175/JCLI-D-11-00704.1
[32] Wang, L. J., A. G. Dai, S. H. Guo, et al., 2017: Establishment of the South Asian high over the Indo-China Peninsula during late spring to summer. Adv. Atmos. Sci., 34, 169–180. doi: 10.1007/s00376-016-6061-7
[33] Wei, N. W., X. M. Li, and Y. F. Gong, 2021: Influence of atmospheric low-frequency oscillations over Qinghai–Tibet Plateau on heatwaves in the Yangtze River Basin in summer of 2013. Plateau Mt. Meteor. Res., 41, 1–8. (in Chinese) doi: 10.3969/j.issn.1674-2184.2021.01.001
[34] Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys., 56, 1102–1111. (in Chinese) doi: 10.6038/cjg20130406
[35] Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627. doi: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2
[36] Yang, H. W., and B. Wang, 2015: Partial lateral forcing experiments reveal how multi-scale processes induce devastating rainfall: A new application of regional modeling. Climate Dyn., 45, 1157–1167. doi: 10.1007/s00382-014-2365-4
[37] Yang, J., Q. Bao, B. Wang, et al., 2014: Distinct quasi-biweekly features of the subtropical East Asian monsoon during early and late summers. Climate Dyn., 42, 1469–1486. doi: 10.1007/s00382-013-1728-6
[38] Ye, L., K. Shi, Z. H. Xin, et al., 2019: Compound droughts and heat waves in China. Sustainability, 11, 3270. doi: 10.3390/su11123270
[39] Yu, R., and P. M. Zhai, 2020: More frequent and widespread persistent compound drought and heat event observed in China. Sci. Rep., 10, 14576. doi: 10.1038/s41598-020-71312-3
[40] Yuan, W. P., W. W. Cai, Y. Chen, et al., 2016: Severe summer heatwave and drought strongly reduced carbon uptake in Southern China. Sci. Rep., 6, 18813. doi: 10.1038/srep18813
[41] Zou, X. K., and H. Gao, 2007: Analysis of severe drought and heat wave over the Sichuan basin in the summer of 2006. Adv. Climate Change Res., 3, 149–153. (in Chinese) doi: 10.3969/j.issn.1673-1719.2007.03.005