[1] Baedi, R. J. P., J. J. M. de Wit, H. W. J. Russechenberg, et al., 2000: Estimating effective radius and liquid water content from radar and lidar based on the CLARE98 data-set. Phys. Chem. Earth, Part B: Hydrol., Oceans Atmos., 25, 1057–1062. doi: 10.1016/s1464-1909(00)00152-0
[2] Chen, X., Q. Tang, S. C. Xie, et al., 2015: A variance-based decomposition and global sensitivity index method for uncertainty quantification: Application to retrieved ice cloud properties. J. Geophys. Res. Atmos., 120, 4234–4247. doi: 10.1002/2014jd022750
[3] Chin, H.-N. S., D. J. Rodriguez, R. T. Cederwall, et al., 2000: A microphysical retrieval scheme for continental low-level stratiform clouds: Impacts of the subadiabatic character on microphysical properties and radiation budgets. Mon. Wea. Rev., 128, 2511–2527. doi: 10.1175/1520-0493(2000)128<2511:amrsfc>2.0.co;2
[4] Choobari, O. A., P. Zawar-Reza, and A. Sturman, 2014: The global distribution of mineral dust and its impacts on the climate system: A review. Atmos. Res., 138, 152–165. doi: 10.1016/j.atmosres.2013.11.007
[5] Clothiaux, E. E., M. A. Miller, B. A. Albrecht, et al., 1995: An evaluation of a 94-Ghz radar for remote sensing of cloud properties. J. Atmos. Ocean. Technol., 12, 201–229. doi: 10.1175/1520-0426(1995)012<0201:aeoagr>2.0.co;2
[6] Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[7] Dong, X. Q., and G. G. Mace, 2003: Profiles of low-level stratus cloud microphysics deduced from ground-based measurements. J. Atmos. Ocean. Technol., 20, 42–53. doi: 10.1175/1520-0426(2003)020<0042:pollsc>2.0.co;2
[8] Dunn, M., K. Johnson, and M. Jensen, 2011: The Microbase Value-Added Product: A Baseline Retrieval of Cloud Microphysical Properties. DOE/SC-ARM/TR-095, U.S. Department of Energy, doi: 10.2172/1015189.
[9] Fu, P. J., J. P. Huang, C. W. Li, et al., 2008: The properties of dust aerosol and reducing tendency of the dust storms in northwest China. Atmos. Environ., 42, 5896–5904. doi: 10.1016/j.atmosenv.2008.03.041
[10] Ge, J. M., J. P. Huang, C. P. Xu, et al., 2014: Characteristics of Taklimakan dust emission and distribution: A satellite and reanalysis field perspective. J. Geophys. Res. Atmos., 119, 11,772–11,783. doi: 10.1002/2014jd022280
[11] Ge, J. M., H. Y. Liu, J. P. Huang, et al., 2016: Taklimakan Desert nocturnal low-level jet: climatology and dust activity. Atmos. Chem. Phys., 16, 7773–7783. doi: 10.5194/acp-16-7773-2016
[12] Guo, J. P., M. Y. Lou, Y. C. Miao, et al., 2017: Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling. Environ. Pollut., 230, 1030–1039. doi: 10.1016/j.envpol.2017.07.062
[13] Huang, J., Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011–4021. doi: 10.5194/acp-9-4011-2009
[14] Huang, J. P., T. H. Wang, W. C. Wang, et al., 2014: Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos., 119, 11,398–11,416. doi: 10.1002/2014jd021796
[15] Illingworth, A. J., R. J. Hogan, E. J. O’Connor, et al., 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883–898. doi: 10.1175/bams-88-6-883
[16] Kogan, Z. N., D. B. Mechem, and Y. L. Kogan, 2005: Assessment of variability in continental low stratiform clouds based on observations of radar reflectivity. J. Geophys. Res. Atmos., 110, D18205. doi: 10.1029/2005jd006158
[17] Kollias, P., E. E. Clothiaux, M. A. Miller, et al., 2007: Millimeter-wavelength radars: New frontier in atmospheric cloud and precipitation research. Bull. Amer. Meteor. Soc., 88, 1608–1624. doi: 10.1175/bams-88-10-1608
[18] Krasnov, O. A., and H. W. J. Russchenberg, 2005: A synergetic radar-lidar technique for the LWC retrieval in water clouds: Description and application to the Cloudnet data. Proceedings of the 32nd Conference of Radar Meteorology, American Meteorology Society, Albuquerque, New Mexico, 1–13.
[19] Li, L. G., and L. De, 2001: Analyses of microphysical features for spring precipitation cloud layers in east of Qinghai. Plateau Meteor., 20, 191–196. (in Chinese) doi: 10.3321/j.issn:1000-0534.2001.02.013
[20] Lin, Y., Q. A. Wang, S. S. Gu, et al., 1995: Atmospheric Sounding Course. China Meteorological Press, Beijing, 20–55. (in Chinese)
[21] Ling, X. L., W. D. Guo, and C. B. Fu, 2011: Composite analysis of impacts of dust aerosols on surface atmospheric variables and energy budgets in a semiarid region of China. J. Geophys. Res. Atmos., 119, 3107–3123. doi: 10.1002/2013jd020274
[22] Liu, L. X., X. Huang, A. J. Ding, et al., 2016: Dust-induced radiative feedbacks in north China: A dust storm episode modeling study using WRF-Chem. Atmos. Environ., 129, 43–54. doi: 10.1016/j.atmosenv.2016.01.019
[23] Mace, G. G., E. E. Clothiaux, and T. P. Ackerman, 2001: The composite characteristics of cirrus clouds: Bulk properties revealed by one year of continuous cloud radar data. J. Climate., 14, 2185–2203. doi: 10.1175/1520-0442(2001)014<2185:tccocc>2.0.co;2
[24] Matrosov, S. Y., T. Uttal, and D. A. Hazen, 2004: Evaluation of radar reflectivity-based estimates of water content in stratiform marine clouds. J. Appl. Meteor. Climatol., 43, 405–419. doi: 10.1175/1520-0450(2004)043<0405:eorreo>2.0.co;2
[25] Mehta, M., N. Singh, and Anshumali, 2018: Global trends of columnar and vertically distributed properties of aerosols with emphasis on dust, polluted dust and smoke-inferences from 10-year long CALIOP observations. Rem. Sens. Environ., 208, 120–132. doi: 10.1016/j.rse.2018.02.017
[26] Moran, K. P., B. E. Martner, M. J. Post, et al., 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443–456. doi: 10.1175/1520-0477(1998)079<0443:aucprf>2.0.co;2
[27] Pan, H. L., M. Z. Wang, K. R. Kumar, et al., 2019: Seasonal and vertical distributions of aerosol type extinction coefficients with an emphasis on the impact of dust aerosol on the microphysical properties of cirrus over the Taklimakan Desert in Northwest China. Atmos. Environ., 203, 216–227. doi: 10.1016/j.atmosenv.2019.02.004
[28] Pan, H. L., W. Huo, M. Z. Wang, et al., 2020: Insight into the climatology of different sand-dust aerosol types over the Taklimakan Desert based on the observations from radiosonde and A-train satellites. Atmos. Environ., 238, 117705. doi: 10.1016/j.atmosenv.2020.117705
[29] Protat, A., D. Bouniol, J. Delanoe, et al., 2009: Assessment of cloudsat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Ocean. Technol., 26, 1717–1741. doi: 10.1175/2009jtecha1246.1
[30] Sassen, K., and Z. E. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805. doi: 10.1029/2007gl032591
[31] Sauvageot, H., and J. Omar, 1987: Radar reflectivity of cumulus clouds. J. Atmos. Ocean. Technol., 4, 264–272. doi: 10.1175/1520-0426(1987)004<0264:rrocc>2.0.co;2
[32] Sheng, P. X., J. T. Mao, J. G. Li, et al., 2013: Atmospheric Physics. 2nd ed. Peking University Press, Beijing, 296–315. (in Chinese)
[33] Shikwambana, L., and V. Sivakumar, 2018: Global distribution of aerosol optical depth in 2015 using CALIPSO level 3 data. J. Atmos. Sol. -Terr. Phys., 173, 150–159. doi: 10.1016/j.jastp.2018.04.003
[34] Stephens, G. L., D. G. Vane, R. J. Boain, et al., 2002: The Cloudsat mission and the A-train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 1771–1790. doi: 10.1175/bams-83-12-1771
[35] Su, J., J. P. Huang, Q. Fu, et al., 2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8, 2763–2771. doi: 10.5194/acp-8-2763-2008
[36] Sun, H. P., P. R. Li, S. M. Yan, et al., 2014: Characteristics of cloud microphysical structure based on aircraft data in 2008–2010 in Shanxi Province. Meteor. Sci. Technol., 42, 682–689. (in Chinese) doi: 10.3969/j.issn.1671-6345.2014.04.027
[37] Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Soc., 34, 1149–1152. doi: 10.1175/1520-0469(1977)034<1149:tiopot>2.0.co;2
[38] Wang, M. Z., and H. Ming, 2018: Study on radar detection of one stratiform cloud precipitation process in the central part of the Tianshan Mountains in China. Asia-Pac. J. Atmos. Sci., 54, 511–524. doi: 10.1007/s13143-018-0059-2
[39] Wang, M. Z., H. Ming, Z. Ruan, et al., 2018: Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z-M relationship. Theor. Appl. Climatol., 131, 927–935. doi: 10.1007/s00704-016-2012-6
[40] Wang, Z., Z. H. Wang, and X. Z. Cao, 2016: Consistency analysis for cloud vertical structure derived from millimeter cloud radar and radiosonde profiles. Acta Meteor. Sinica, 74, 815–826, doi: 10.11676/qxxb2016.057. Accessed on 22 October 2022, available at http://qxxb.cmsjournal.net/cn/article/doi/10.11676/qxxb2016.057. (in Chinese)
[41] Wang, Z., Z. H. Wang, X. Z. Gao, et al., 2018: Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar. Atmos. Res., 199, 113–127. doi: 10.1016/j.atmosres.2017.09.009
[42] Xu, X. F., H. Wu, X. Y. Yang, et al., 2020: Distribution and transport characteristics of dust aerosol over Tibetan Plateau and Taklimakan Desert in China using MERRA-2 and CALIPSO data. Atmos. Environ., 237, 117670. doi: 10.1016/j.atmosenv.2020.117670
[43] You, L.G., 1994: Study on Cloud Precipitation Physics and Artificial Precipitation Enhancement Technology. China Meteorological Press, Beijing, 83–88. (in Chinese)
[44] Yumimoto, K., K. Eguchi, I. Uno, et al., 2009: An elevated large-scale dust veil from the Taklimakan Desert: Intercontinental transport and three-dimensional structure as captured by CALIPSO and regional and global models. Atmos. Chem. Phys., 9, 8545–8558. doi: 10.5194/acp-9-8545-2009
[45] Zhang, D. G., X. L. Guo, D. L. Gong, et al., 2011: The observational results of the clouds microphysical structure based on the data obtained by 23 sorties between 1989 and 2008 in Shandong Province. Acta Meteor. Sinica., 69, 195–207. (in Chinese) doi: 10.11676/qxxb2011.017
[46] Zhang, Y., Q. Zhou, S. S. Lyu, et al., 2019: Elucidating cloud vertical structures based on three-year Ka-band cloud radar observations from Beijing, China. Atmos. Res., 222, 88–89. doi: 10.1016/j.atmosres.2019.02.007
[47] Zhao, C. F., S. C. Xie, X. Chen, et al., 2014: Quantifying uncertainties of cloud microphysical property retrievals with a perturbation method. J. Geophys. Res. Atmos., 119, 5375–5385. doi: 10.1002/2013jd021112
[48] Zhao, C. F., L. P. Liu, Q. Q. Wang, et al., 2017: MMCR-based characteristic properties of non-precipitating cloud liquid droplets at Naqu site over Tibetan Plateau in July 2014. Atmos. Res., 190, 68–76. doi: 10.1016/j.atmosres.2017.02.002
[49] Zhou, Q., Y. Zhang, B. Li, et al., 2019: Cloud-base and cloud-top heights determined from a ground-based cloud radar in Beijing, China. Atmos. Environ., 201, 381–390. doi: 10.1016/j.atmosenv.2019.01.012
[50] Zong, R., L. P. Liu, and Y. Yin, 2013: Relationship between cloud characteristics and radar reflectivity based on aircraft and cloud radar co-observations. Adv. Atmos. Sci., 30, 1275–1286. doi: 10.1007/s00376-013-2090-7