[1] Allen, M. R., and S. F. B. Tett, 1999: Checking for model consistency in optimal fingerprinting. Climate Dyn., 15, 419–434. doi: 10.1007/s003820050291
[2] Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting, Part I: Theory. Climate Dyn., 21, 477–491. doi: 10.1007/s00382-003-0313-9
[3] Cunnane, C., 1978: Unbiased plotting positions—a review. J. Hydrol., 37, 205–222. doi: 10.1016/0022-1694(78)90017-3
[4] Eyring, V., S. Bony, G. A. Meehl, et al., 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958. doi: 10.5194/gmd-9-1937-2016
[5] Gillett, N. P., H. Shiogama, B. Funke, et al., 2016: The detection and attribution model intercomparison project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev., 9, 3685–3697. doi: 10.5194/gmd-9-3685-2016
[6] Hao, Z. C., F. H. Hao, V. P. Singh, et al., 2018: Changes in the severity of compound drought and hot extremes over global land areas. Environ. Res. Lett., 13, 124022. doi: 10.1088/1748-9326/aaee96
[7] Hasselmann, K., 1997: Multi-pattern fingerprint method for detection and attribution of climate change. Climate Dyn., 13, 601–611. doi: 10.1007/s003820050185
[8] Hegerl, G., and F. Zwiers, 2011: Use of models in detection and attribution of climate change. WIREs Climate Change, 2, 570–591. doi: 10.1002/wcc.121
[9] Hegerl, G. C., O. Hoegh-Guldberg, G. Casassa, et al., 2010: Good practice guidance paper on detection and attribution related to anthropogenic climate change. Proc. IPCC Expert Meeting on Detection and Attribution Related to Anthropogenic Climate Change, Geneva, Switzerland, 1–8.
[10] Knutson, T. R., J. P. Kossin, C. Mears, et al., 2017: Detection and attribution of climate change. Climate Science Special Report: Fourth National Climate Assessment, Volume I, D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, et al., Eds., U.S. Global Change Research Program, Washington D. C., USA, 114–132, doi: 10.7930/J01834ND.
[11] Kong, Q. Q., S. B. Guerreiro, S. Blenkinsop, et al., 2020: Increases in summertime concurrent drought and heatwave in eastern China. Wea. Climate Extremes, 28, 100242. doi: 10.1016/j.wace.2019.100242
[12] Li, H. X., H. P. Chen, B. Sun, et al., 2020: A detectable anthropogenic shift toward intensified summer hot drought events over northeastern China. Earth Space Sci., 7, e2019EA000836. doi: 10.1029/2019EA000836
[13] Li, J., Z. L. Wang, X. S. Wu, et al., 2021: A standardized index for assessing sub-monthly compound dry and hot conditions with application in China. Hydrol. Earth Syst. Sci., 25, 1587–1601. doi: 10.5194/hess-25-1587-2021
[14] Li, W., and Y. Chen, 2021: Detectability of the trend in precipitation characteristics over China from 1961 to 2017. Int. J. Climatol., 41, E1980–E1991. doi: 10.1002/joc.6826
[15] Li, W., Z. H. Jiang, X. B. Zhang, et al., 2018: Additional risk in extreme precipitation in China from 1.5°C to 2.0°C global warming levels. Sci. Bull., 63, 228–234. doi: 10.1016/j.scib.2017.12.021
[16] Nelsen, R. B., J. J. Quesada-Molina, J. A. Rodríguez-Lallena, et al., 2008: On the construction of copulas and quasi-copulas with given diagonal sections. Insur. Math. Econom., 42, 473–483. doi: 10.1016/j.insmatheco.2006.11.011
[17] Qian, C., and X. B. Zhang, 2019: Changes in temperature seasonality in China: Human influences and internal variability. J. Climate, 32, 6237–6249. doi: 10.1175/JCLI-D-19-0081.1
[18] Ribes, A., and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part II: Application to global near-surface temperature. Climate Dyn., 41, 2837–2853. doi: 10.1007/s00382-013-1736-6
[19] Ribes, A., S. Planton, and L. Terray, 2013: Application of regularised optimal fingerprinting to attribution. Part I: Method, properties and idealised analysis. Climate Dyn., 41, 2817–2836. doi: 10.1007/s00382-013-1735-7
[20] Shi, C., Z. H. Jiang, W. L. Chen, et al., 2018: Changes in temperature extremes over China under 1.5°C and 2°C global warming targets. Adv. Climate Change Res., 9, 120–129. doi: 10.1016/j.accre.2017.11.003
[21] Sun, Y., X. B. Zhang, F. W. Zwiers, et al., 2014: Rapid increase in the risk of extreme summer heat in eastern China. Nat. Climate Change, 4, 1082–1085. doi: 10.1038/nclimate2410
[22] World Meteorological Organization, 2020: WMO Statement on the State of the Global Climate in 2019. WMO-No. 1248, World Meteorological Organization, Geneva, 1–44. Available at https://public.wmo.int/en/resources/library/wmo-statement-state-of-global-climate-2019. Accessed on 13 January 2022.
[23] Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese J. Geophys., 56, 1102–1111. (in Chinese) doi: 10.6038/cjg20130406
[24] Wu, X. Y., Z. C. Hao, F. H. Hao, et al., 2019: Variations of compound precipitation and temperature extremes in China during 1961–2014. Sci. Total Environ., 663, 731–737. doi: 10.1016/j.scitotenv.2019.01.366
[25] Wu, X. Y., Z. C. Hao, X. Zhang, et al., 2020: Evaluation of severity changes of compound dry and hot events in China based on a multivariate multi-index approach. J. Hydrol., 583, 124580. doi: 10.1016/j.jhydrol.2020.124580
[26] Xu, Y., X. J. Gao, Y. Shi, et al., 2015: Detection and attribution analysis of annual mean temperature changes in China. Climate Res., 63, 61–71. doi: 10.3354/cr01283
[27] You, Q. L., J. Z. Min, W. Zhang, et al., 2015: Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dyn., 45, 791–806. doi: 10.1007/s00382-014-2310-6
[28] Yu, R., and P. M. Zhai, 2020a: Changes in compound drought and hot extreme events in summer over populated eastern China. Wea. Climate Extremes, 30, 100295. doi: 10.1016/j.wace.2020.100295
[29] Yu, R., and P. M. Zhai, 2020b: More frequent and widespread persistent compound drought and heat event observed in China. Sci. Rep., 10, 14576. doi: 10.1038/s41598-020-71312-3
[30] Zhai, P. M., X. B. Zhang, H. Wan, et al., 2005: Trends in total precipitation and frequency of daily precipitation extremes over China. J. Climate, 18, 1096–1108. doi: 10.1175/JCLI-3318.1
[31] Zhai, P. M., B. Q. Zhou, and Y. Chen, 2018: A review of climate change attribution studies. J. Meteor. Res, 32, 671–692. doi: 10.1007/s13351-018-8041-6
[32] Zhang, J. P., T. B. Zhao, A. G. Dai, et al., 2019: Detection and attribution of atmospheric precipitable water changes since the 1970s over China. Sci. Rep., 9, 17609. doi: 10.1038/s41598-019-54185-z
[33] Zhou, B. T., Y. Xu, J. Wu, et al., 2016: Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36, 1051–1066. doi: 10.1002/joc.4400
[34] Zhou, T. J., and W. X. Zhang, 2021: Anthropogenic warming of Tibetan Plateau and constrained future projection. Environ. Res. Lett., 16, 044039. doi: 10.1088/1748-9326/abede8
[35] Zscheischler, J., S. Westra, B. J. J. M. Van Den Hurk, et al., 2018: Future climate risk from compound events. Nat. Climate Change, 8, 469–477. doi: 10.1038/s41558-018-0156-3