[1] Abdi, A. M., N. Boke-Olén, H. Jin, et al., 2019: First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. Int. J. Appl. Earth Obs. Geoinformation, 78, 249–260. doi: 10.1016/j.jag.2019.01.018
[2] Aboubakri, O., N. Khanjani, Y. Jahani, et al., 2019: The impact of heat waves on mortality and years of life lost in a dry region of Iran (Kerman) during 2005–2017. Int. J. Biometeorol., 63, 1139–1149. doi: 10.1007/s00484-019-01726-w
[3] Ageena, I., N. Macdonald, and A. P. Morse, 2013: Variability of minimum temperature across Libya (1945–2009). Int. J. Climatol., 33, 641–653. doi: 10.1002/joc.3452
[4] Ahmadi, F., M. N. Tahroudi, R. Mirabbasi, et al., 2018: Spatiotemporal trend and abrupt change analysis of temperature in Iran. Meteor. Appl., 25, 314–321. doi: 10.1002/met.1694
[5] Balling, R. C. Jr., M. S. K. Kiany, and S. S. Roy, 2016: Anthropogenic signals in Iranian extreme temperature indices. Atmos. Res., 169, 96–101. doi: 10.1016/j.atmosres.2015.09.030
[6] Bani-Domi, M., 2005: Trend analysis of temperatures and precipitation in Jordan. Ph.D. dissertation, Dept. of Geography, Yarmouk University, Irbid-Jordan, 100 pp.
[7] Berdugo, M., M. Delgado-Baquerizo, S. Soliveres, et al., 2020: Global ecosystem thresholds driven by aridity. Science, 367, 787–790. doi: 10.1126/science.aay5958
[8] Bilbao, J., R. Román, and A. De Miguel, 2019: Temporal and spatial variability in surface air temperature and diurnal temperature range in Spain over the period 1950–2011. Climate, 7, 16. doi: 10.3390/cli7010016
[9] Cohen, J. L., J. C. Furtado, M. Barlow, et al., 2012: Asymmetric seasonal temperature trends. Geophys. Res. Lett., 39, L04705. doi: 10.1029/2011GL050582
[10] Collins, M., R. Knutti, J. L. Arblaster, et al., 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, 1029–1136.
[11] Cox, D. T. C., I. M. D. Maclean, A. S. Gardner, et al., 2020: Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol., 26, 7099–7111. doi: 10.1111/gcb.15336
[12] Dai, A. G., 2006: Recent climatology, variability, and trends in global surface humidity. J. Climate, 19, 3589–3606. doi: 10.1175/JCLI3816.1
[13] Daneshvar, M. R. M., M. Ebrahimi, and H. Nejadsoleymani, 2019: An overview of climate change in Iran: Facts and statistics. Environ. Syst. Res., 8, 7. doi: 10.1186/s40068-019-0135-3
[14] Dashkhuu, D., J. P. Kim, J. A. Chun, et al., 2015: Long-term trends in daily temperature extremes over Mongolia. Wea. Climate Extremes, 8, 26–33. doi: 10.1016/j.wace.2014.11.003
[15] Del Río, S., R. Fraile, L. Herrero, et al., 2007: Analysis of recent trends in mean maximum and minimum temperatures in a region of the NW of Spain (Castilla y León). Theor. Appl. Climatol., 90, 1–12. doi: 10.1007/s00704-006-0278-9
[16] Del Río, S., L. Herrero, C. Pinto-Gomes, et al., 2011: Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob. Planet. Change, 78, 65–75. doi: 10.1016/j.gloplacha.2011.05.012
[17] Doulabian, S., S. Golian, A. S. Toosi, et al., 2021: Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. J. Water Climate Change, 12, 166–184, doi: 10.2166/wcc.2020.114.
[18] Duhan, D., A. Pandey, K. P. S. Gahalaut, et al., 2013: Spatial and temporal variability in maximum, minimum and mean air temperatures at Madhya Pradesh in central India. Comptes Rendus Geosci., 345, 3–21. doi: 10.1016/j.crte.2012.10.016
[19] El Kenawy, A. M., J. I. Lopez-Moreno, M. F. McCabe, et al., 2019: Daily temperature extremes over Egypt: Spatial patterns, temporal trends, and driving forces. Atmos. Res., 226, 219–239. doi: 10.1016/j.atmosres.2019.04.030
[20] Eslamian, S. S., J. Abedi-Koupai, M. J. Amiri, et al., 2009: Estimation of daily reference evapotranspiration using support vector machines and artificial neural networks in greenhouse. Res. J. Environ. Sci., 3, 439–447. doi: 10.3923/rjes.2009.439.447
[21] Fallah-Ghalhari, G., F. Shakeri, and A. Dadashi-Roudbari, 2019: Impacts of climate changes on the maximum and minimum temperature in Iran. Theor. Appl. Climatol., 138, 1539–1562. doi: 10.1007/s00704-019-02906-9
[22] Fathian, F., M. Ghadami, P. Haghighi, et al., 2020: Assessment of changes in climate extremes of temperature and precipitation over Iran. Theor. Appl. Climatol., 141, 1119–1133. doi: 10.1007/s00704-020-03269-2
[23] Feizi, V., M. Mollashahi, M. Frajzadeh, et al., 2014: Spatial and temporal trend analysis of temperature and precipitation in Iran. Ecopersia, 2, 727–742. Available online at http://ecopersia.modares.ac.ir/article-24-6002-en.html. Accessed on 30 May 2022.
[24] Gallo, K., R. Hale, D. Tarpley, et al., 2011: Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. J. Appl. Meteor. Climatol., 50, 767–775. doi: 10.1175/2010JAMC2460.1
[25] Geng, Q. L., P. T. Wu, and X. N. Zhao, 2016: Spatial and temporal trends in climatic variables in arid areas of Northwest China. Int. J. Climatol., 36, 4118–4129. doi: 10.1002/joc.4621
[26] Gentine, P., D. Entekhabi, A. Chehbouni, et al., 2007: Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteor., 143, 13–29. doi: 10.1016/j.agrformet.2006.11.002
[27] Ghahraman, B., 2006: Time trend in the mean annual temperature of Iran. Turk. J. Agric. For., 30, 439–448. Available online at https://profdoc.um.ac.ir/paper-abstract-203712.html. Accessed on 30 May 2022.
[28] Ghasemi, A. R., 2015: Changes and trends in maximum, minimum and mean temperature series in Iran. Atmos. Sci. Lett., 16, 366–372. doi: 10.1002/asl2.569
[29] Ghasemi, A. R., and D. Khalili, 2006: The influence of the Arctic Oscillation on winter temperatures in Iran. Theor. Appl. Climatol., 85, 149–164. doi: 10.1007/s00704-005-0186-4
[30] Good, P., J. A. Lowe, T. Andrews, et al., 2015: Nonlinear regional warming with increasing CO2 concentrations. Nat. Climate Change, 5, 138–142. doi: 10.1038/nclimate2498
[31] Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441–475. doi: 10.1146/annurev.energy.25.1.441
[32] Huang, J., X. Guan, and F. Ji, 2012: Enhanced cold-season warming in semi-arid regions. Atmos. Chem. Phys., 12, 5391–5398. doi: 10.5194/acp-12-5391-2012
[33] IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, 1535 pp, doi: 10.1017/CBO9781107415324.
[34] IPCC, 2018: Summary for policymakers. Global Warming of 1.5°C, An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, V. Masson-Delmotte, P. M. Zhai, H.-O. Pörtner, et al., Eds., IPCC, Geneva, 32 pp.
[35] Jamali, S., J. Seaquist, L. Eklundh, et al., 2014: Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote Sens. Environ., 141, 79–89. doi: 10.1016/j.rse.2013.10.019
[36] Ji, F., Z. H. Wu, J. P. Huang, et al., 2014: Evolution of land surface air temperature trend. Nat. Climate Change, 4, 462–466. doi: 10.1038/nclimate2223
[37] Karandish, F., S. S. Mousavi, and H. Tabari, 2017: Climate change impact on precipitation and cardinal temperatures in different climatic zones in Iran: Analyzing the probable effects on cereal water-use efficiency. Stoch. Environ. Res. Risk Assess., 31, 2121–2146. doi: 10.1007/s00477-016-1355-y
[38] Karl, T. R., P. D. Jones, R. W. Knight, et al., 1993: Asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74, 1007–1023. doi: 10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2
[39] Kazemzadeh, M., and A. Malekian, 2018: Changeability evaluation of hydro-climate variables in Western Caspian Sea region, Iran. Environ. Earth Sci., 77, 120. doi: 10.1007/s12665-018-7305-x
[40] Kendall, M. G., 1948: Rank Correlation Methods. 4th Ed., Griffin, London, 160 pp.
[41] Keshavarz, M., E. Karami, and F. Vanclay, 2013: The social experience of drought in rural Iran. Land Use Policy, 30, 120–129. doi: 10.1016/j.landusepol.2012.03.003
[42] Khalili, A., 1992: Arid and semi arid regions of Iran. Proceeding of Seminar on the Problems of Iranian Deserts and Kavirs, Yazd, Iran, 566–579.
[43] Khalili, A., and J. Rahimi, 2018: Climate. The Soils of Iran, M. Roozitalab, H. Siadat, and A. Farshad, Eds., Springer, Cham, 19–33.
[44] Khattak, M. S., M. S. Babel, and M. Sharif, 2011: Hydro-meteorological trends in the upper Indus River basin in Pakistan. Climate Res., 46, 103–119. doi: 10.3354/cr00957
[45] King, A. D., 2019: The drivers of nonlinear local temperature change under global warming. Environ. Res. Lett., 14, 064005. doi: 10.1088/1748-9326/ab1976
[46] King, A. D., R. Knutti, P. Uhe, et al., 2018: On the linearity of local and regional temperature changes from 1.5°C to 2°C of global warming. J. Climate, 31, 7495–7514. doi: 10.1175/JCLI-D-17-0649.1
[47] Kolmogorov, A., 1933: Sulla Determinazione Empirica di una Legge di Distribuzione. Giornale dell'Istituto Italiano degli Attuari, 4, 83–91.
[48] Kousari, M. R., H. Ahani, and R. Hendi-Zadeh, 2013: Temporal and spatial trend detection of maximum air temperature in Iran during 1960–2005. Glob. Planet. Change, 111, 97–110. doi: 10.1016/j.gloplacha.2013.08.011
[49] Leduc, M., H. D. Matthews, and R. De Elía, 2015: Quantifying the limits of a linear temperature response to cumulative CO2 emissions. J. Climate, 28, 9955–9968. doi: 10.1175/JCLI-D-14-00500.1
[50] Li, Q. X., X. N. Liu, H. Z. Zhang, et al., 2004: Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data. Adv. Atmos. Sci., 21, 260–268. doi: 10.1007/BF02915712
[51] Ma, G., A. A. Hoffmann, and C. S. Ma, 2015: Daily temperature extremes play an important role in predicting thermal effects. J. Exp. Biol., 218, 2289–2296. doi: 10.1242/jeb.122127
[52] Malekian, A., and M. Kazemzadeh, 2016: Spatio–temporal analysis of regional trends and shift changes of autocorrelated temperature series in Urmia Lake Basin. Water Resour. Manage., 30, 785–803. doi: 10.1007/s11269-015-1190-9
[53] Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245–259. doi: 10.2307/1907187
[54] Matiu, M., D. P. Ankerst, and A. Menzel, 2016: Asymmetric trends in seasonal temperature variability in instrumental records from ten stations in Switzerland, Germany and the UK from 1864 to 2012. Int. J. Climatol., 36, 13–27. doi: 10.1002/joc.4326
[55] Moghim, S., 2018. Impact of climate variation on hydrometeorology in Iran. Glob. Planet. Change, 170, 93–105, doi: 10.1016/j.gloplacha.2018.08.013.
[56] Mohorji, A. M., Z. Şen, and M. Almazroui, 2017: Trend analyses revision and global monthly temperature innovative multi-duration analysis. Earth Syst. Environ., 1, 9 pp. doi: 10.1007/s41748-017-0014-x
[57] Mullick, M. R. A., R. M. Nur, M. J. Alam, et al., 2019: Observed trends in temperature and rainfall in Bangladesh using pre-whitening approach. Glob. Planet. Change, 172, 104–113. doi: 10.1016/j.gloplacha.2018.10.001
[58] Najafi, M. S., F. Khoshakhllagh, S. M. Zamanzadeh, et al., 2014: Characteristics of TSP loads during the Middle East springtime dust storm (MESDS) in Western Iran. Arab. J. Geosci., 7, 5367–5381. doi: 10.1007/s12517-013-1086-z
[59] Nazaripour, H., and M. R. M. Daneshvar, 2014: Spatial contribution of one-day precipitations variability to rainy days and rainfall amounts in Iran. Int. J. Environ. Sci. Technol., 11, 1751–1758. doi: 10.1007/s13762-014-0616-x
[60] Pal, J. S., and E. A. B. Eltahir, 2016: Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Climate Change, 6, 197–200. doi: 10.1038/nclimate2833
[61] Perkins-Kirkpatrick, S. E., and P. B. Gibson, 2017: Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep., 7, 12256. doi: 10.1038/s41598-017-12520-2
[62] Pour, S. H., A. K. A. Wahab, S. Shahid, et al., 2019: Spatial pattern of the unidirectional trends in thermal bioclimatic indicators in Iran. Sustainability, 11, 2287. doi: 10.3390/su11082287
[63] Prăvălie, R., 2016: Drylands extent and environmental issues. A global approach. Earth-Sci. Rev., 161, 259–278. doi: 10.1016/j.earscirev.2016.08.003
[64] Qiu, X., L. J. Zhang,W. L. Li, et al., 2016: Studies on changes and cause of the minimum air temperature in Songnen Plain of China during 1961–2010. Acta Ecol. Sinica, 36, 311–320. doi: 10.1016/j.chnaes.2016.06.009
[65] Qu, M., J. Wan, and X. J. Hao, 2014: Analysis of diurnal air temperature range change in the continental United States. Wea. Climate Extremes, 4, 86–95. doi: 10.1016/j.wace.2014.05.002
[66] Rahimi, J., M. Ebrahimpour, and A. Khalili, 2013: Spatial changes of Extended De Martonne climatic zones affected by climate change in Iran. Theor. Appl. Climatol., 112, 409–418. doi: 10.1007/s00704-012-0741-8
[67] Rahimzadeh, F., A. Asgari, and E. Fattahi, 2009: Variability of extreme temperature and precipitation in Iran during recent decades. Int. J. Climatol., 29, 329–343. doi: 10.1002/joc.1739
[68] Rahmstorf, S., G. Foster, and N. Cahill, 2017: Global temperature evolution: Recent trends and some pitfalls. Environ. Res. Lett., 12, 054001. doi: 10.1088/1748-9326/aa6825
[69] Rashki, A., D. G. Kaskaoutis, A. S. Goudie, et al., 2013: Dryness of ephemeral lakes and consequences for dust activity: The case of the Hamoun drainage basin, southeastern Iran. Sci. Total Environ., 463464, 552–564, doi: 10.1016/j.scitotenv.2013.06.045.
[70] Saboohi, R., S. Soltani, and M. Khodagholi, 2012: Trend analysis of temperature parameters in Iran. Theor. Appl. Climatol., 109, 529–547. doi: 10.1007/s00704-012-0590-5
[71] Shi, J., L. L. Cui., Y. Ma, et al., 2018: Trends in temperature extremes and their association with circulation patterns in China during 1961–2015. Atmos. Res., 212, 259–272. doi: 10.1016/j.atmosres.2018.05.024
[72] Smadi, M. M., 2006: Observed abrupt changes in minimum and maximum temperatures in Jordan in the 20th century. Amer. J. Environ. Sci., 2, 114–120. Available online at https://thescipub.com/abstract/10.3844/ajessp.2006.114.120. Accessed on 30 May 2022.
[73] Smirnoff, H., 1939: Sur les écarts de la courbe de distribution empirique. Rec. Math. (Mat. Sbornik), 6, 3–26. Available online at http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=sm&paperid=5810&option_lang=eng. Accessed on 30 May 2022.
[74] Soltani, M., P. Laux, H. Kunstmann, et al., 2016: Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor. Appl. Climatol., 126, 775–795. doi: 10.1007/s00704-015-1609-5
[75] Sonali, P., and D. N. Kumar, 2013: Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol., 476, 212–227. doi: 10.1016/j.jhydrol.2012.10.034
[76] Soureshjani, H. K., A. G. Dehkordi, and M. Bahador, 2019: Temperature effect on yield of winter and spring irrigated crops. Agric. For. Meteor., 279, 107664. doi: 10.1016/j.agrformet.2019.107664
[77] Stjern, C. W., B. H. Samset, O. Boucher, et al., 2020: How aerosols and greenhouse gases influence the diurnal temperature range. Atmos. Chem. Phys., 20, 13,467–13,480. doi: 10.5194/acp-20-13467-2020
[78] Tabari, H., and P. H. Talaee, 2011: Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob. Planet. Change, 79, 1–10. doi: 10.1016/j.gloplacha.2011.07.008
[79] Tabari, H., and P. Willems, 2018: Seasonally varying footprint of climate change on precipitation in the Middle East. Sci. Rep., 8, 4435. doi: 10.1038/s41598-018-22795-8
[80] Türkes, M., U. M. Sümer, and G. Kiliç, 1996: Observed changes in maximum and minimum temperatures in Turkey. Int. J. Climatol., 16, 463–477. doi: 10.1002/(SICI)1097-0088(199604)16:4<463::AID-JOC13>3.0.CO;2-G
[81] United Nations, 2019: World Population Prospects 2019. Department of Economic and Social Affairs Population Division, New York, 374 pp.
[82] Wang, P., T. C. Xie, J. G. Dai, et al., 2017: Trends and variability in precipitable water vapor throughout North China from 1979 to 2015. Adv. Meteor., 2017, 7804823. doi: 10.1155/2017/7804823
[83] Wang, X. Y., Y. Q. Li, Y. P. Chen, et al., 2018: Temporal and spatial variation of extreme temperatures in an agro-pastoral ecotone of northern China from 1960 to 2016. Sci. Rep., 8, 8787. doi: 10.1038/s41598-018-27066-0
[84] Yang, Y., M. Gao, N. R. Xie, et al., 2020: Relating anomalous large-scale atmospheric circulation patterns to temperature and precipitation anomalies in the East Asian monsoon region. Atmos. Res., 232, 104679. doi: 10.1016/j.atmosres.2019.104679
[85] You, Q. L., J. Z. Min, K. Fraedrich, et al., 2014: Projected trends in mean, maximum, and minimum surface temperature in China from simulations. Glob. Planet. Change, 112, 53–63. doi: 10.1016/j.gloplacha.2013.11.006
[86] Yu, D. L., W. J. Li, and Y. Zhou, 2019: Analysis of trends in air temperature at Chinese stations considering the long-range correlation effect. Phys. A: Stat. Mech. Appl., 533, 122034. doi: 10.1016/j.physa.2019.122034
[87] Zhang, L. P., L. X. Wu, and B. L. Gan, 2013: Modes and mechanisms of global water vapor variability over the twentieth century. J. Climate, 26, 5578–5593. doi: 10.1175/JCLI-D-12-00585.1