[1] Albergel, C., P. De Rosnay, G. Balsamo, et al., 2012: Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeorol., 13, 1442–1460. doi: 10.1175/JHM-D-11-0107.1
[2] Armstrong, R. L., and M. J. Brodzik, 2001: Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave satellite sensors. Geophys. Res. Lett., 28, 3673–3676. doi: 10.1029/2000GL012556
[3] Balsamo, G., S. Boussetta, E. Dutra, et al., 2011: Evolution of land-surface processes in the IFS. ECMWF Newsletter, No. 127, 17–22. doi: 10.21957/x1j3i7bz.
[4] Barlage, M., F. Chen, M. Tewari, et al., 2010: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J. Geophys. Res. Atmos., 115, D22101. doi: 10.1029/2009JD013470
[5] Berrisford, P., D. Dee, K. Fielding, et al., 2009: The ERA-Interim Archive. ECMWF, Reading, UK, 16 pp.
[6] Betts, A. K., F. Chen, K. E. Mitchell, et al., 1997: Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta model using FIFE data. Mon. Wea. Rev., 125, 2896–2916. doi: 10.1175/1520-0493(1997)125<2896:AOTLSA>2.0.CO;2
[7] Bonan, G. B., 1996: A Land Surface model (LSM version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User’s Guide. NCAR Technical Note: NCAR/TN-417+STR, National Center for Atmospheric Research, Boulder, CO, doi: 10.5065/D6DF6P5X.
[8] Cai, X. T., Z. L. Yang, Y. L. Xia, et al., 2014: Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. J. Geophys. Res. Atmos., 119, 13751–13770. doi: 10.1002/2014JD022113
[9] Chen, Y. Y., K. Yang, J. Qin, et al., 2013: Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos., 118, 4466–4475. doi: 10.1002/jgrd.50301
[10] Clapp, R. B., and G. M. Hornberger, 1978: Empirical equations for some soil hydraulic properties. Water Resour. Res., 14, 601–604. doi: 10.1029/WR014i004p00601
[11] Dai, Y. J., and Q. C. Zeng, 1997: A land surface model (IAP94) for climate studies Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., 14, 433–460. doi: 10.1007/s00376-997-0063-4
[12] Dai, Y. J., X. B. Zeng, R. E. Dickinson, et al., 2003: The common land model. Bull. Amer. Meteor. Soc., 84, 1013–1024. doi: 10.1175/BAMS-84-8-1013
[13] Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[14] Dickinson, R. E., A. Henderson-Sellers, and P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer Scheme (BATS) Version 1E as Coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, CO, doi: 10.5065/D67W6959.
[15] Dirmeyer, P. A., Z. C. Guo, and X. Gao, 2004: Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeorol., 5, 1011–1033. doi: 10.1175/JHM-388.1
[16] Dorigo, W., R. de Jeu, D. Chung, et al., 2012: Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett., 39, L18405. doi: 10.1029/2012GL052988
[17] Dorigo, W. A., A. Gruber, R. A. M. de Jeu, et al., 2015: Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ., 162, 380–395. doi: 10.1016/j.rse.2014.07.023
[18] Douville, H., J. F. Royer, and J. F. Mahfouf, 1995: A new snow parameterization for the Météo-France climate model. Part I: Validation in stand-alone experiments. Climate Dyn., 12, 21–35. doi: 10.1007/BF00208760
[19] Dutra, E., G. Balsamo, P. Viterbo, et al., 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeorol., 11, 899–916. doi: 10.1175/2010JHM1249.1
[20] Ebita, A., S. Kobayashi, Y. Ota, et al., 2011: The Japanese 55-year reanalysis " JRA-55”: An interim report. SOLA, 7, 149–152. doi: 10.2151/sola.2011-038
[21] Essery, R., 1997: Seasonal snow cover and climate change in the Hadley Centre GCM. Ann. Glaciol., 25, 362–366. doi: 10.3189/S0260305500014282
[22] Eyring, V., S. Bony, G. A. Meehl, et al., 2016: Overview of the Coupled Model Intercomparison Project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958. doi: 10.5194/gmd-9-1937-2016
[23] Fan, Y., and H. van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res. Atmos., 109, D10102. doi: 10.1029/2003JD004345
[24] Foster, D. F. Jr., and R. D. Davy, 1988: Global Snow Depth Climatology. USAF Environmental Technical Application Center, Scott Air Force Base, Illinois, USA, 48 pp.
[25] Frankenberg, C., J. B. Fisher, J. Worden, et al., 2011: New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett., 38, L17706. doi: 10.1029/2011GL048738
[26] Griffies, S. M., 2010: Elements of MOM4p1. GFDL Ocean Group Technical Report No. 6, NOAA/Geophysical Fluid Dynamics Laboratory, 444 pp.
[27] Huang, J., H. M. van den Dool, and K. P. Georgarakos, 1996: Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J. Climate, 9, 1350–1362. doi: 10.1175/1520-0442(1996)009<1350:AOMCSM>2.0.CO;2
[28] Ikeda, K., R. Rasmussen, C. H. Liu, et al., 2010: Simulation of seasonal snowfall over Colorado. Atmos. Res., 97, 462–477. doi: 10.1016/j.atmosres.2010.04.010
[29] Ji, D., L. Wang, J. Feng, et al., 2014: Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1. Geosci. Model Dev., 7, 2039–2064. doi: 10.5194/gmd-7-2039-2014
[30] Ji, D. and Y. Dai, 2010: The Common land model (CoLM) technical guide. [available online at http://globalchange.bnu.edu.cn/download/doc/CoLM/CoLM_Technical_Guide.pdf].
[31] Jung, M., M. Reichstein, H. A. Margolis, et al., 2011: Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci., 116, G00J07. doi: 10.1029/2010JG001566
[32] Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[33] Koster, R. D., Z. C. Guo, R. Q. Yang, et al., 2009: On the nature of soil moisture in land surface models. J. Climate, 22, 4322–4335. doi: 10.1175/2009JCLI2832.1
[34] Kumar, S. V., C. D. Peters-Lidard, Y. Tian, et al., 2006: Land Information System: An interoperable framework for high resolution land surface modeling. Environ. Modell. Softw., 21, 1402–1415. doi: 10.1016/j.envsoft.2005.07.004
[35] Li, C. W., H. Lu, K. Yang, et al., 2017: Evaluation of the common land model (CoLM) from the perspective of water and energy budget simulation: Towards inclusion in CMIP6. Atmosphere, 8, 141. doi: 10.3390/atmos8080141
[36] Li, L. H., Y. P. Wang, V. K. Arora, et al., 2018: Evaluating global land surface models in CMIP5: Analysis of ecosystem water- and light-use efficiencies and rainfall partitioning. J. Climate, 31, 2995–3008. doi: 10.1175/JCLI-D-16-0177.1
[37] Li, Z. C., Z. G. Wei, S. H. Lv, et al., 2014: Effect of land surface processes on the Tibetan Plateau’s past and its predicted response to global warming: An analytical investigation based on simulation results from the CMIP5 model. Environ. Earth Sci., 72, 1155–1166. doi: 10.1007/s12665-013-3034-3
[38] Ma, N., G. Y. Niu, Y. L. Xia, et al., 2017: A systematic evaluation of Noah-MP in simulating land–atmosphere energy, water, and carbon exchanges over the continental United States. J. Geophys. Res. Atmos., 122, 12245–12268. doi: 10.1002/2017JD027597
[39] Mahfouf, J. F., and J. Noilhan, 1991: Comparative study of various formulations of evaporations from bare soil using in situ data. J. Appl. Meteor., 30, 1351–1362. doi: 10.1175/1520-0450(1991)030<1354:CSOVFO>2.0.CO;2
[40] Mueller, B., and S. I. Seneviratne, 2014: Systematic land climate and evapotranspiration biases in CMIP5 simulations. Geophys. Res. Lett., 41, 128–134. doi: 10.1002/2013GL058055
[41] Niu, G. Y., and Z. L. Yang, 2006: Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J. Hydrometeorol., 7, 937–952. doi: 10.1175/JHM538.1
[42] Niu, G.-Y., and Z.-L. Yang, 2007: An observation-based formulation of snow cover fraction and its evaluation over large North American river basins. J. Geophys. Res. Atmos., 112, D21101. doi: 10.1029/2007JD008674
[43] Pielke, R. A., G. Marland, R. A. Betts, et al., 2002: The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 360, 1705–1719. doi: 10.1098/rsta.2002.1027
[44] Qin, Y. H., T. H. Wu, X. D. Wu, et al., 2017: Assessment of reanalysis soil moisture products in the permafrost regions of the central of the Qinghai–Tibet Plateau. Hydrol. Processes, 31, 4647–4659. doi: 10.1002/hyp.11383
[45] Robock, A., K. Y. Vinnikov, G. Srinivasan, et al., 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81, 1281–1300. doi: 10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2
[46] Rodell, M., P. R. Houser, U. Jambor, et al., 2004: The global land data assimilation system. Bull. Amer. Meteor. Soc., 85, 381–394. doi: 10.1175/BAMS-85-3-381
[47] Roeckner, E., G. Bäuml, L. Bonaventura, et al., 2003: The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description. MPI-Report No. 349, Max Planck Institute for Meteorology, Hamburg, 140 pp.
[48] Roesch, A., and E. Roeckner, 2006: Assessment of snow cover and surface albedo in the ECHAM5 general circulation model. J. Climate, 19, 3828–3843. doi: 10.1175/JCLI3825.1
[49] Rong, X. Y., J. Li, H. M. Chen, et al., 2018: The CAMS climate system model and a basic evaluation of its climate state and variability simulation. J. Meteor. Res., 32, 839–861. doi: 10.1007/s13351-018-8058-x
[50] Su, B. D., A. Q. Wang, G. J. Wang, et al., 2016: Spatiotemporal variations of soil moisture in the Tarim River basin, China. International Journal of Applied Earth Observation and Geoinformation, 48, 122–130. doi: 10.1016/j.jag.2015.06.012
[51] Swenson, S. C., and D. M. Lawrence, 2012: A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance. J. Geophys. Res. Atmos., 117, D21107. doi: 10.1029/2012JD018178
[52] Valayamkunnath, P., V. Sridhar, W. G. Zhao, et al., 2018: Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, large-aperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agric. Forest Meteor., 248, 22–47. doi: 10.1016/j.agrformet.2017.08.025
[53] van den Hurk, B. J. J. M., P. Viterbo, A. C. M. Beljaars, et al., 2000: Offline Validation of the ERA40 Surface Scheme. Technical Memorandum No. 295, ECMWF, Reading, UK, 43 pp.
[54] Viterbo, P., and A. C. M. Beljaars, 1995: An improved land surface parameterization scheme in the ECMWF model and its validation. J. Climate, 8, 2716–2748. doi: 10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2
[55] Wang, A. H., X. B. Zeng, and D. L. Guo, 2016: Estimates of global surface hydrology and heat fluxes from the community land model (CLM4.5) with four atmospheric forcing datasets. J. Hydrometeorol., 17, 2493–2510. doi: 10.1175/JHM-D-16-0041.1
[56] Xia, K., B. Wang, L. J. Li, et al., 2014: Evaluation of snow depth and snow cover fraction simulated by two versions of the flexible global ocean–atmosphere–land system model. Adv. Atmos. Sci., 31, 407–420. doi: 10.1007/s00376-013-3026-y
[57] Xia, Y. L., B. A. Cosgrove, K. E. Mitchell, et al., 2016: Basin-scale assessment of the land surface water budget in the National Centers for Environmental Prediction operational and research NLDAS-2 systems. J. Geophys. Res. Atmos., 121, 2750–2779. doi: 10.1002/2015JD023733
[58] Yanai, M., and G. X. Wu, 2006: Effects of the Tibetan Plateau. The Asian Monsoon, B. Wang, Ed., Springer, Berlin, Heidelberg, Germany, 513–549.
[59] Yang, K., X. F. Guo, and B. Y. Wu, 2011: Recent trends in surface sensible heat flux on the Tibetan Plateau. Sci. China Earth Sci., 54, 19–28. doi: 10.1007/s11430-010-4036-6
[60] Yu, R. C., 1994: A two—step shape—preserving advection scheme. Adv. Atmos. Sci., 11, 479–490. doi: 10.1007/BF02658169
[61] Zhang, G., G. S. Zhou, F. Chen, et al., 2014: A trial to improve surface heat exchange simulation through sensitivity experiments over a desert steppe site. J. Hydrometeorol., 15, 664–684. doi: 10.1175/JHM-D-13-0113.1
[62] Zhang, H., G. Y. Shi, T. Nakajima, et al., 2006a: The effects of the choice of the k-interval number on radiative calculations. Journal of Quantitative Spectroscopy and Radiative Transfer, 98, 31–43. doi: 10.1016/j.jqsrt.2005.05.090
[63] Zhang, H., T. Suzuki, T. Nakajima, et al., 2006b: Effects of band division on radiative calculations. Optical Engineering, 45, 016002. doi: 10.1117/1.2160521