[1] Best, M. J., M. Pryor, D. B. Clark, et al., 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 677–699. doi: 10.5194/gmd-4-677-2011
[2] Bett, P. E., A. A. Scaife, C. F. Li, et al., 2018: Seasonal forecasts of the summer 2016 Yangtze River basin rainfall. Adv. Atmos. Sci., 35, 918–926. doi: 10.1007/s00376-018-7210-y
[3] Bett, P. E., H. E. Thornton, A. Troccoli, et al., 2019: A simplified seasonal forecasting strategy, applied to wind and solar power in Europe. EarthArXiv preprint, doi: 10.31223/osf.io/kzwqx.
[4] Camp, J., M. J. Roberts, R. E. Comer, et al., 2019: The western Pacific subtropical high and tropical cyclone landfall: Seasonal forecasts using the Met Office GloSea5 system. Quart. J. Roy. Meteor. Soc., 145, 105–116. doi: 10.1002/qj.3407
[5] Camp, J., P. E. Bett, N. Golding, et al., 2020: Verification of the 2019 GloSea5 seasonal tropical cyclone landfall forecast for East China. J. Meteor. Res., 34, 917–925. doi: 10.1007/s13351-020-0043-5
[6] Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597. doi: 10.1002/qj.828
[7] Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142. doi: 10.1007/s00703-005-0125-z
[8] Golding, N., C. Hewitt, P. Q. Zhang, et al., 2017a: Improving user engagement and uptake of climate services in China. Climate Serv., 5, 39–45. doi: 10.1016/j.cliser.2017.03.004
[9] Golding, N., C. Hewitt, and P. Q. Zhang, 2017b: Effective engagement for climate services: Methods in practice in China. Climate Serv., 8, 72–76. doi: 10.1016/j.cliser.2017.11.002
[10] Golding, N., C. Hewitt, P. Q. Zhang, et al., 2019: Co-development of a seasonal rainfall forecast service: Supporting flood risk management for the Yangtze River basin. Climate Risk Manag., 23, 43–49. doi: 10.1016/j.crm.2019.01.002
[11] Hardiman, S. C., N. J. Dunstone, A. A. Scaife, et al., 2018: The asymmetric response of Yangtze River basin summer rainfall to El Niño/La Niña. Environ. Res. Lett., 13, 024015. doi: 10.1088/1748-9326/aaa172
[12] Hewitt, C. D., N. Golding, P. Q. Zhang, et al., 2020: The process and benefits of developing prototype climate services—Examples in China. J. Meteor. Res., 34, 893–903. doi: 10.1007/s13351-020-0042-6
[13] Hunke, E. C., and W. H. Lipscomb, 2010: CICE: The Los Alamos Sea Ice Model Documentation and Software Users’ Manual, Version 4.1. Report LA-CC-06-012, Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 73 pp. Available at https://www.researchgate.net/publication/237249046. Accessed on 22 October 2020.
[14] Jordan, A., F. Krüger, and S. Lerch, 2019: Evaluating probabilis-tic forecasts with scoringRules. J. Stat. Softw., 90, 1–37. doi: 10.18637/jss.v090.i12
[15] Ke, Z. J., P. Q. Zhang, L. J. Chen, et al., 2011: An experiment of a statistical downscaling forecast model for summer precipitation over China. Atmos. Oceani. Sci. Lett., 4, 270–275. doi: 10.1080/16742834.2011.11446941
[16] Li, F., and Z. D. Lin, 2015: Improving multi-model ensemble probabilistic prediction of Yangtze River valley summer rainfall. Adv. Atmos. Sci., 32, 497–504. doi: 10.1007/s00376-014-4073-8
[17] Li, C. F., A. A. Scaife, R. Y. Lu, et al., 2016: Skillful seasonal prediction of Yangtze River valley summer rainfall. Environ. Res. Lett., 11, 094002. doi: 10.1088/1748-9326/11/9/094002
[18] Liu, Y., and K. Fan, 2012: Improve the prediction of summer precipitation in the southeastern China by a hybrid statistical downscaling model. Meteor. Atmos. Phys., 117, 121–134. doi: 10.1007/s00703-012-0201-0
[19] Liu, Y., H.-L. Ren, A. A. Scaife, et al., 2018: Evaluation and statistical downscaling of East Asian summer monsoon forecasting in BCC and MOHC seasonal prediction systems. Quart. J. Roy. Meteor. Soc., 144, 2798–2811. doi: 10.1002/qj.3405
[20] MacLachlan, C., A. Arribas, K. A. Peterson, et al., 2015: Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084. doi: 10.1002/qj.2396
[21] Madec, G., and the NEMO System Team, 2019: NEMO ocean engine. Scientific Notes of Climate Modelling Center, 27— ISSN 1288-1619, Institut Pierre-Simon Laplace (IPSL), doi: 10.5281/zenodo.1464816.
[22] Martin, G. M., N. J. Dunstone, A. A. Scaife, et al., 2020: Predicting June mean rainfall in the middle/lower Yangtze River basin. Adv. Atmos. Sci., 37, 29–41. doi: 10.1007/s00376-019-9051-8
[23] Megann, A., D. Storkey, Y. Aksenov, et al., 2014: GO5.0: The joint NERC–Met Office NEMO global ocean model for use in coupled and forced applications. Geosci. Model Dev., 7, 1069–1092. doi: 10.5194/gmd-7-1069-2014
[24] Plate, E. J., 2002: Flood risk and flood management. J. Hydrol., 267, 2–11. doi: 10.1016/s0022-1694(02)00135-x
[25] Qian, S. N., J. Chen, X. Q. Li, et al., 2020: Seasonal rainfall forecasting for the Yangtze River basin using statistical and dynamical models. Int. J. Climatol., 40, 361–377. doi: 10.1002/joc.6216
[26] Rae, J. G. L., H. T. Hewitt, A. B. Keen, et al., 2015: Development of the Global Sea Ice 6.0 CICE configuration for the Met Office Global Coupled model. Geosci. Model Dev., 8, 2221–2230. doi: 10.5194/gmd-8-2221-2015
[27] Scaife, A. A., J. Camp, R. Comer, et al., 2019: Does increased atmospheric resolution improve seasonal climate predictions? Atmos. Sci. Lett., 20, e922. doi: 10.1002/asl.922
[28] Schneider, U., A. Becker, P. Finger, et al., 2018a: GPCC Full Data Monthly Product Version 2018 at 1.0°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data. Deutscher Wetterdienst (DWD), doi: 10.5676/DWD_GPCC/FD_M_V2018_100.
[29] Schneider, U., A. Becker, P. Finger, et al., 2018b: GPCC Monitoring Product: Near Real-Time Monthly Land-Surface Precipitation from Rain-Gauges based on SYNOP and CLIMAT data. Deutscher Wetterdienst (DWD), doi: 10.5676/DWD_GPCC/MP_M_V6_100.
[30] Steiger, J. H., 1980: Tests for comparing elements of a correlation matrix. Psychol. Bull., 87, 245–251. doi: 10.1037/0033-2909.87.2.245
[31] Walters, D., I. Boutle, M. Brooks, et al., 2017: The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Glo-bal Land 6.0/6.1 configurations. Geosci. Model Dev., 10, 1487–1520. doi: 10.5194/gmd-10-1487-2017
[32] Wang, B., 2018: Global monsoon summary [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc., 99, S111–S112, doi: 10.1175/2018BAMSStateoftheClimate.1.
[33] Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638. doi: 10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2
[34] Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386–398. doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2
[35] Wang, B., Z. W. Wu, J. P. Li, et al., 2008: How to measure the strength of the East Asian summer monsoon. J. Climate, 21, 4449–4463. doi: 10.1175/2008JCLI2183.1
[36] Wang, B., J. Liu, J. Yang, et al., 2009: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Climate, 22, 3864–3875. doi: 10.1175/2009JCLI2850.1
[37] Wang, B., J. Li, and Q. He, 2017: Variable and robust East Asian monsoon rainfall response to El Niño over the past 60 years (1957–2016). Adv. Atmos. Sci., 34, 1235–1248. doi: 10.1007/s00376-017-7016-3
[38] Wang, H. J., K. Fan, J. Q. Sun, et al., 2015: A review of seasonal climate prediction research in China. Adv. Atmos. Sci., 32, 149–168. doi: 10.1007/s00376-014-0016-7
[39] Wilks, D. S., 2019: Forecast verification. Statistical Methods in the Atmospheric Sciences, D. S. Wilks, Ed., 4th ed. Elsevier, Amsterdam, 369–483, doi: 10.1016/B978-0-12-815823-4.00009-2.
[40] Williams, K. D., C. M. Harris, A. Bodas-Salcedo, et al., 2015: The Met Office Global Coupled model 2.0 (GC2) configuration. Geosci. Model Dev., 8, 1509–1524. doi: 10.5194/gmd-8-1509-2015
[41] Xia, J. Q., S. S. Deng, J. Y. Lu, et al., 2016: Dynamic channel adjustments in the Jingjiang Reach of the Middle Yangtze River. Sci. Rep., 6, 22802. doi: 10.1038/srep22802
[42] Xinhua News Agency, 2019: China to step up flood control in 2019: minister. Available online at http://www.xinhuanet.com/english/2019-03/12/c_137889023.htm. Accessed on 22 October 2020.
[43] Ye, Q., and M. H. Glantz, 2005: The 1998 Yangtze Floods: The use of short-term forecasts in the context of seasonal to interannual water resource management. Mitig. Adapt. Strat. Glob. Change, 10, 159–182. doi: 10.1007/s11027-005-7838-7
[44] Yu, F. L., Z. Y. Chen, X. Y. Ren, et al., 2009: Analysis of histori-cal floods on the Yangtze River, China: Characteristics and explanations. Geomorphology, 113, 210–216. doi: 10.1016/j.geomorph.2009.03.008
[45] Yuan, Y., H. Gao, W. J. Li, et al., 2017: The 2016 summer floods in China and associated physical mechanisms: A comparison with 1998. J. Meteor. Res., 31, 261–277. doi: 10.1007/s13351-017-6192-5
[46] Zeng, H. L., C. Xiao, X. Y. Chen, et al., 2020: State of China’s climate in 2019. Atmos. Ocean. Sci. Lett., 13, 356–362. doi: 10.1080/16742834.2020.1762159
[47] Zeng, L. L., R. W. Schmitt, L. F. Li, et al., 2019: Forecast of summer precipitation in the Yangtze River Valley based on South China Sea springtime sea surface salinity. Climate Dyn., 53, 5495–5509. doi: 10.1007/s00382-019-04878-y
[48] Zhang, P., T. C. Lee, Y. Mochizuki, et al., 2018: East and Southeast Asia [in “State of the Climate in 2017”]. Bull. Amer. Meteor. Soc., 99, S237–S239, doi: 10.1175/2018BAMS Stateof the Climate.1.
[49] Zhang, W. J., F.-F. Jin, M. F. Stuecker, et al., 2016: Unraveling El Niño’s impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11,375–11,382. doi: 10.1002/2016gl071190
[50] Zhu, Z., T. Li, and A. Shimpo, 2019: The weakest East Asian summer monsoon during the past 40 years [in “State of the Climate in 2018”]. Bull. Amer. Meteor. Soc., 100, S238–S239, doi: 10.1175/2019BAMSStateoftheClimate.1.
[51] Zhu, Z. W., S. J. Chen, K. Yuan, et al., 2017: Empirical subseaso-nal prediction of summer rainfall anomalies over the middle and lower reaches of the Yangtze River basin based on atmospheric intraseasonal oscillation. Atmosphere, 8, 185. doi: 10.3390/atmos8100185
[52] Zong, Y. Q. and X. Q. Chen, 2000: The 1998 flood on the Yangtze, China. Nat. Hazards, 22, 165–184. doi: 10.1023/A:1008119805106
[53] Zou, X. K., X. Y. Chen, H. L. Zeng, et al., 2020: State of the climate over the Three Gorges Region of the Yangtze River in 2018. Atmos. Ocean. Sci. Lett., 13, 48–54. doi: 10.1080/16742834.2020.1693879