[1] Bacmeister, J. T., K. A. Reed, C. Hannay, et al., 2018: Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Climatic Change, 146, 547–560. doi: 10.1007/s10584-016-1750-x
[2] Chan, J. C. L., and K. S. Liu, 2004: Global warming and western North Pacific typhoon activity from an observational perspective. J. Climate, 17, 4590–4602. doi: 10.1175/3240.1
[3] Chan, K. T. F., and J. C. L. Chan, 2015: Impacts of vortex intensity and outer winds on tropical cyclone size. Quart. J. Roy. Meteor. Soc., 141, 525–537. doi: 10.1002/qj.2374
[4] Chavas, D. R., N. Lin, W. H. Dong, et al., 2016: Observed tropical cyclone size revisited. J. Climate, 29, 2923–2939. doi: 10.1175/JCLI-D-15-0731.1
[5] Chou, M.-D., and M. J. Suarez, 1994: An Efficient Thermal Infrared Radiation Parameterization for Use in General Circulation Models. NASA Technical Memorandum No. 104606, NASA, Washington, 85 pp.
[6] Deo, A. A., D. W. Ganer, and G. Nair, 2011: Tropical cyclone activity in global warming scenario. Nat. Hazards, 59, 771–786. doi: 10.1007/s11069-011-9794-8
[7] Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605. doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
[8] Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688. doi: 10.1038/nature03906
[9] Emanuel, K., 2007: Environmental factors affecting tropical cyclone power dissipation. J. Climate, 20, 5497–5509. doi: 10.1175/2007JCLI1571.1
[10] Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294–3315. doi: 10.1175/2009MWR2679.1
[11] Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120. doi: 10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
[12] Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181. doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
[13] Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett., 33, L10805. doi: 10.1029/2006GL025881
[14] Knutson, T. R., J. L. McBride, J. Chan, et al., 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157–163. doi: 10.1038/ngeo779
[15] Li, H., and R. L. Sriver, 2018: Impact of tropical cyclones on the global ocean: Results from multidecadal global ocean simulations isolating tropical cyclone forcing. J. Climate, 31, 8761–8784. doi: 10.1175/JCLI-D-18-0221.1
[16] Li, T., M. H. Kwon, M. Zhao, et al., 2010: Global warming shifts Pacific tropical cyclone location. Geophys. Res. Lett., 37, L21804. doi: 10.1029/2010gl045124
[17] Lighthill, J., G. Holland, W. Gray, et al., 1994: Global climate change and tropical cyclones. Bull. Amer. Meteor. Soc., 75, 2147–2157. doi: 10.1175/1520-0477-75.11.2147
[18] Lin, I.-I., G. J. Goni, J. A. Knaff, et al., 2013: Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards, 66, 1481–1500. doi: 10.1007/s11069-012-0214-5
[19] Lin, I.-I., and J. C. L. Chan, 2015: Recent decrease in typhoon destructive potential and global warming implications. Nat. Commun., 6, 7182. doi: 10.1038/ncomms8182
[20] Liu, K. S., and J. C. L. Chan, 1999: Size of tropical cyclones as inferred from ERS-1 and ERS-2 data. Mon. Wea. Rev., 127, 2992–3001. doi: 10.1175/1520-0493(1999)127<2992:SOTCAI>2.0.CO;2
[21] Malkus, J. S., and H. Riehl, 1960: On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12, 1–20. doi: 10.3402/tellusa.v12i1.9351
[22] Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16,663–16,682. doi: 10.1029/97JD00237
[23] Persing, J., M. T. Montgomery, and R. E. Tuleya, 2002: Environmental interactions in the GFDL hurricane model for Hurricane Opal. Mon. Wea. Rev., 130, 298–317. doi: 10.1175/1520-0493(2002)130<0298:EIITGH>2.0.CO;2
[24] Radu, R., R. Toumi, and J. Phau, 2014: Influence of atmospheric and sea surface temperature on the size of Hurricane Catarina. Quart. J. Roy. Meteor. Soc., 140, 1778–1784. doi: 10.1002/qj.2232
[25] Stovern, D. R., and E. A. Ritchie, 2016: Simulated sensitivity of tropical cyclone size and structure to the atmospheric temperature profile. J. Atmos. Sci., 71, 4553–4571. doi: 10.1175/JAS-D-15-0186.1
[26] Sun, Y., Z. Zhong, Y. Ha, et al., 2013: The dynamic and thermodynamic effects of relative and absolute sea surface temperature on tropical cyclone intensity. Acta Meteor. Sinica, 27, 40–49. doi: 10.1007/s13351-013-0105-z
[27] Sun, Y., Z. Zhong, L. Yi, et al., 2014: The opposite effects of inner and outer sea surface temperature on tropical cyclone intensity. J. Geophys. Res. Atmos., 119, 2193–2208. doi: 10.1002/2013jd021354
[28] Sun, Y., Z. Zhong, T. Li, et al., 2017a: Impact of ocean warming on tropical cyclone size and its destructiveness. Sci. Rep., 7, 8154. doi: 10.1038/s41598-017-08533-6
[29] Sun, Y., Z. Zhong, T. Li, et al., 2017b: Impact of ocean warming on tropical cyclone track over the western North Pacific: A numerical investigation based on two case studies. J. Geophys. Res. Atmos., 122, 8617–8630. doi: 10.1002/2017jd026959
[30] Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498. doi: 10.1175/BAMS-D-11-00094.1
[31] Trenberth, K. E., L. J. Cheng, P. Jacobs, et al., 2018: Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future, 6, 730–744. doi: 10.1029/2018ef000825
[32] Walsh, K. J. E., J. L. McBride, P. J. Klotzbach, et al., 2015: Tropical cyclones and climate change. Wiley Interdiscip. Rev.: Climate Change, 7, 65–89. doi: 10.1002/wcc.371
[33] Wang, H., C.-C. Wu, and Y. Q. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation: Balanced and unbalanced dynamics. J. Atmos. Sci., 73, 3911–3930. doi: 10.1175/JAS-D-15-0146.1
[34] Wang, S., R. Toumi, A. Czaja, et al., 2015: An analytic model of tropical cyclone wind profiles. Quart. J. Roy. Meteor. Soc., 141, 3018–3029. doi: 10.1002/qj.2586
[35] Webster, P. J., G. J. Holland, J. A. Curry, et al., 2005: Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846. doi: 10.1126/science.1116448
[36] Xu, J., and Y. Q. Wang, 2010a: Sensitivity of tropical cyclone inner-core size and intensity to the radial distribution of surface entropy flux. J. Atmos. Sci., 67, 1831–1852. doi: 10.1175/2010JAS3387.1
[37] Xu, J., and Y. Q. Wang, 2010b: Sensitivity of the simulated tropical cyclone inner-core size to the initial vortex size. Mon. Wea. Rev., 138, 4135–4157. doi: 10.1175/2010MWR3335.1
[38] Zhang, C. X., and Y. Q. Wang, 2017: Projected future changes of tropical cyclone activity over the western North and South Pacific in a 20-km-mesh regional climate model. J. Climate, 30, 5923–5941. doi: 10.1175/JCLI-D-16-0597.1