[1] Arblaster, J., G. Meehl, and A. Moore, 2002: Interdecadal modulation of Australian rainfall. Climate Dyn., 18, 519–531. doi: 10.1007/s00382-001-0191-y
[2] Boer, G. J., D. M. Smith, C. Cassou, et al., 2016: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev., 9, 3751–3777. doi: 10.5194/gmd-9-3751-2016
[3] Branstator, G., and H. Teng, 2012: Potential impact of initialization on decadal predictions as assessed for CMIP5 models. Geophy. Res. Lett., 39, L12703. doi: 10.1029/2012GL051974
[4] Branstator, G., H. Teng, G. A. Meehl, et al., 2012: Systematic estimates of initial-value decadal predictability for six AOGCMs. J. Climate, 26, 1827–1846. doi: 10.1175/JCLI-D-11-00227.1
[5] Bretherton, C. S., M. Widmann, V. P. Dymnikov, et al., 1999: The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12, 1990–2009. doi: 10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2
[6] Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 2999–3017. doi: 10.1175/2007mwr1978.1
[7] Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, et al., 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28. doi: 10.1002/qj.776
[8] Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249–266. doi: 10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2
[9] Deser, C., and M. S. Timlin, 1997: Atmosphere–ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393–408. doi: 10.1175/1520-0442(1997)010<0393:AOIOWT>2.0.CO;2
[10] Deser, C., and A. S. Phillips, 2006: Simulation of the 1976/77 climate transition over the North Pacific: Sensitivity to tropical forcing. J. Climate, 19, 6170–6180. doi: 10.1175/JCLI3963.1
[11] Ding, Q. H., E. J. Steig, and D. S. Battisti, et al., 2012: Influence of the tropics on the southern annular mode. J. Climate, 25, 6330–6348. doi: 10.1175/JCLI-D-11-00523.1
[12] Eyring, V., S. Bony, G. A. Meehl, et al., 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937–1958. doi: 10.5194/gmd-9-1937-2016
[13] Fan, K., 2009: Predicting winter surface air temperature in Northeast China. Atmos. Ocean. Sci. Lett., 2, 14–17. doi: 10.1080/16742834.2009.11446770
[14] Fan, K., 2010: A prediction model for Atlantic named storm frequency using a year-by-year increment approach. Wea. Forecasting, 25, 1842–1851. doi: 10.1175/2010WAF2222406.1
[15] Fan, K., and H. J. Wang, 2009: A new approach to forecasting typhoon frequency over the western North Pacific. Wea. Forecasting, 24, 974–986. doi: 10.1175/2009WAF2222194.1
[16] Fan, K., H. J. Wang, and Y. J. Choi, 2008: A physically-based statistical forecast model for the middle–lower reaches of the Yangtze River Valley summer rainfall. Chinese Sci. Bull., 53, 602–609. doi: 10.1007/s11434-008-0083-1
[17] Fan, Y., and K. Fan, 2017: Pacific Decadal Oscillation and the decadal change in the intensity of the interannual variability of the South China Sea summer monsoon. Atmos. Ocean. Sci. Lett., 10, 162–167. doi: 10.1080/16742834.2016.1256189
[18] Fu, C. B., C. Qian, and Z. H. Wu, 2011: Projection of global mean surface air temperature changes in next 40 years: Uncertainties of climate models and an alternative approach. Sci. China Earth Sci., 54, 1400–1406. doi: 10.1007/s11430-011-4235-9
[19] Guemas, V., F. J. Doblas-Reyes, F. Lienert, et al., 2012: Identifying the causes of the poor decadal climate prediction skill over the North Pacific. J. Geophys. Res. Atmos., 117, D20111. doi: 10.1029/2012JD018004
[20] He, Y. J., B. Wang, M. M. Liu, et al., 2017: Reduction of initial shock in decadal predictions using a new initialization strategy. Geophys. Res. Lett., 44, 8538–8547. doi: 10.1002/2017gl074028
[21] Huang, Y. Y., H. J. Wang, and K. Fan, 2014: Improving the prediction of the summer Asian–Pacific Oscillation using the interannual increment approach. J. Climate, 27, 8126–8134. doi: 10.1175/JCLI-D-14-00209.1
[22] Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701. doi: 10.1029/2012GL051644
[23] Kosaka, Y., and S. P. Xie, 2013: Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403–407. doi: 10.1038/nature12534
[24] Lindsay, R. W., and J. Zhang, 2005: The thinning of Arctic sea ice, 1988–2003: Have we passed a tipping point? J. Climate, 18, 4879–4894. doi: 10.1175/JCLI3587.1
[25] Luo, F. F., and S. L. Li, 2014: Joint statistical–dynamical approach to decadal prediction of East Asian surface air temperature. Sci. China Earth Sci., 57, 3062–3072. doi: 10.1007/s11430-014-4984-3
[26] Mantua, N. J., S. R. Hare, Y. Zhang, et al., 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
[27] McCabe, G. J., M. A. Palecki, and J. L. Betancourt, 2004: Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc. Natl. Acad. Sci. USA, 101, 4136–4141. doi: 10.1073/pnas.0306738101
[28] McCabe, G. J., T. R. Ault, B. I. Cook, et al., 2012: Influences of the El Niño Southern Oscillation and the Pacific Decadal Oscillation on the timing of the North American spring. Int. J. Climatol., 32, 2301–2310. doi: 10.1002/joc.3400
[29] Meehl, G. A., and H. Y. Teng, 2014: CMIP5 multi-model hindcasts for the mid-1970s shift and early 2000s hiatus and predictions for 2016–2035. Geophys. Res. Lett., 41, 1711–1716. doi: 10.1002/2014GL059256
[30] Meehl, G. A., L. Goddard, J. Murphy, et al., 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 1467–1486. doi: 10.1175/2009BAMS2778.1
[31] Meehl, G. A., L. Goddard, G. Boer, et al., 2014: Decadal climate prediction: An update from the trenches. Bull. Amer. Meteor. Soc., 95, 243–267. doi: 10.1175/BAMS-D-12-00241.1
[32] Mehta, V. M., K. Mendoza, and H. Wang, 2019: Predictability of phases and magnitudes of natural decadal climate variability phenomena in CMIP5 experiments with the UKMO HadCM3, GFDL-CM2.1, NCAR-CCSM4, and MIROC5 global earth system models. Climate Dyn., 52, 3255–3275. doi: 10.1007/s00382-018-4321-1
[33] Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Appl. Meteor., 26, 1589–1600. doi: 10.1175/1520-0450(1987)026<1589:CVISCF>2.0.CO;2
[34] Miller, A. J., F. Chai, S. Chiba, et al., 2004: Decadal-scale climate and ecosystem interactions in the North Pacific Ocean. J. Oceanogr., 60, 163–188. doi: 10.1023/b:joce.0000038325.36306.95
[35] Mochizuki, T., M. Ishii, M. Kimoto, et al., 2010: Pacific Decadal Oscillation hindcasts relevant to near-term climate prediction. Proc. Natl. Acad. Sci. USA, 107, 1833–1837. doi: 10.1073/pnas.0906531107
[36] Mochizuki, T., Y. Chikamoto, M. Kimoto, et al., 2012: Decadal prediction using a recent series of MIROC global climate models. J. Meteor. Soc. Japan, 90A, 373–383. doi: 10.2151/jmsj.2012-A22
[37] Nakamura, H., and A. S. Kazmin, 2003: Decadal changes in the North Pacific oceanic frontal zones as revealed in ship and satellite observations. J. Geophys. Res. Oceans, 108, 3078. doi: 10.1029/1999JC000085
[38] Newman, M., 2013: An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Climate, 26, 5260–5269. doi: 10.1175/jcli-d-12-00590.1
[39] Newman, M., M. A. Alexander, T. R. Ault, et al., 2016: The Pacific decadal oscillation, revisited. J. Climate, 29, 4399–4427. doi: 10.1175/JCLI-D-15-0508.1
[40] Qiu, B., 2003: Kuroshio Extension variability and forcing of the Pacific Decadal Oscillations: Responses and potential feedback. J. Phys. Oceanogr., 33, 2465–2482. doi: 10.1175/2459.1
[41] Rayner, N. A., D. E. Parker, E. B. Horton, et al., 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108, 4407. doi: 10.1029/2002JD002670
[42] Schneider, N., and B. D. Cornuelle, 2005: The forcing of the Pacific Decadal Oscillation. J. Climate, 18, 4355–4373. doi: 10.1175/JCLI3527.1
[43] Smirnov, D., M. Newman, and M. A. Alexander, 2014: Investigating the role of ocean–atmosphere coupling in the North Pacific Ocean. J. Climate, 27, 592–606. doi: 10.1175/JCLI-D-13-00123.1
[44] Smith, D. M., R. Eade, N. J. Dunstone, et al., 2010: Skilful multi-year predictions of Atlantic hurricane frequency. Nat. Geosci., 3, 846–849. doi: 10.1038/ngeo1004
[45] Smith, T. M., R. W. Reynolds, T. C. Peterson, et al., 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296. doi: 10.1175/2007JCLI2100.1
[46] Sun, J. Q., and H. J. Wang, 2006: Relationship between Arctic Oscillation and Pacific Decadal Oscillation on decadal timescale. Chinese Sci. Bull., 51, 75–79. doi: 10.1007/s11434-004-0221-3
[47] Tian, B. Q., and K. Fan, 2015: A skillful prediction model for winter NAO based on Atlantic sea surface temperature and Eurasian snow cover. Wea. Forecasting, 30, 197–205. doi: 10.1175/WAF-D-14-00100.1
[48] Wang, H. J., Y. Zhang, and X. M. Lang, 2010: On the predictand of short-term climate prediction. Climatic Environ. Res., 15, 225–228. (in Chinese) doi: 10.3878/j.issn.1006-9585.2010.03.01
[49] Wang, H. J., K. Fan, X. M. Lang, et al., 2012: Initiating and applying the interannual increment prediction approach. Advances in Climate Prediction Theory and Technique of China, China Meteorological Press, 120–139. (in Chinese)
[50] Wang, T., and J. P. Miao, 2018: Twentieth-century Pacific Decadal Oscillation simulated by CMIP5 coupled models. Atmos. Ocean. Sci. Lett., 11, 94–101. doi: 10.1080/16742834.2017.1381548
[51] Wang, T., O. H. Otterå, Y. Q. Gao, et al., 2012: The response of the North Pacific decadal variability to strong tropical volca-nic eruptions. Climate Dyn., 39, 2917–2936. doi: 10.1007/s00382-012-1373-5
[52] Yang, X. S., A. Rosati, S. Q. Zhang, et al., 2013: A predictable AMO-like pattern in the GFDL fully coupled ensemble initialization and decadal forecasting system. J. Climate, 26, 650–661. doi: 10.1175/jcli-d-12-00231.1
[53] Yeh, S. W., Y. J. Kang, Y. Noh, et al., 2011: The North Pacific climate transitions of the winters of 1976/77 and 1988/89. J. Climate, 24, 1170–1183. doi: 10.1175/2010jcli3325.1
[54] Yu, L., T. Furevik, O. H. Otterå, et al., 2015: Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: A comparison of observations to 600-years control run of Bergen Climate Model. Climate Dyn., 44, 475–494. doi: 10.1007/s00382-014-2141-5
[55] Zhou, T. J., and B. Wu, 2017: Decadal climate prediction: Scienti-fic frontier and challenge. Adv. Earth Sci., 32, 331–341. (in Chinese) doi: 10.11867/j.issn.1001-8166.2017.04.0331
[56] Zhu, Y. L., H. J. Wang, J. H. Ma, et al., 2015: Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall. J. Geophys. Res. Atmos., 120, 8817–8827. doi: 10.1002/2015jd023545