[1] Amores, A., S. Monserrat, O. Melnichenko, et al., 2017: On the shape of sea level anomaly signal on periphery of mesoscale ocean eddies. Geophys. Res. Lett., 44, 6926–6932. doi: 10.1002/2017GL073978
[2] Anderson, L. A., D. J. Jr. McGillicuddy, M. E. Maltrud, et al., 2011: Impact of eddy–wind interaction on eddy demographics and phytoplankton community structure in a model of the North Atlantic Ocean. Dyn. Atmos. Oceans, 52, 80–94. doi: 10.1016/j.dynatmoce.2011.01.003
[3] Brown, O. B., D. B. Olson, J. W. Brown, et al., 1983: Satellite infrared observations of the kinematics of a warm-core ring. Aust. J. Mar. Freshwater Res., 34, 535–545. doi: 10.1071/MF9830535
[4] Businger, J. A., and W. J. Shaw, 1984: The response of the marine boundary layer to mesoscale variations in sea-surface temperature. Dyn. Atmos. Oceans, 8, 267–281. doi: 10.1016/0377-0265(84)90012-5
[5] Byrne, D., L. Papritz, I. Frenger, et al., 2015: Atmospheric response to mesoscale sea surface temperature anomalies: Assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J. Atmos. Sci., 72, 1872–1890. doi: 10.1175/JAS-D-14-0195.1
[6] Byrne, D., M. Münnich, I. Frenger, et al., 2016: Mesoscale atmosphere ocean coupling enhances the transfer of wind energy into the ocean. Nat. Commun., 7, 11867. doi: 10.1038/ncomms11867
[7] Chelton, D. B., and S.-P. Xie, 2010: Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography, 23, 52–69. doi: 10.5670/oceanog.2010.05
[8] Chelton, D. B., S. K. Esbensen, M. G. Schlax, et al., 2001: Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 1479–1498. doi: 10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2
[9] Chen, G., G. Y. Han, and X. Q. Yang, 2019: On the intrinsic shape of oceanic eddies derived from satellite altimetry. Remote Sens. Environ., 228, 75–89. doi: 10.1016/j.rse.2019.04.011
[10] Chen, L. J., Y. L. Jia, and Q. Y. Liu, 2017: Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region. J. Oceanogr., 73, 295–307. doi: 10.1007/s10872-016-0403-z
[11] Early, J. J., R. M. Samelson, and D. B. Chelton, 2011: The evolution and propagation of quasigeostrophic ocean eddies. J. Phys. Oceanogr., 41, 1535–1555. doi: 10.1175/2011JPO4601.1
[12] Fernandes, A. M., 2009: Study on the automatic recognition of oceanic eddies in satellite images by ellipse center detection—The Iberian Coast case. IEEE Trans. Geosci. Remote Sens., 47, 2478–2491. doi: 10.1109/TGRS.2009.2014155
[13] Frenger, I., N. Gruber, R. Knutti, et al., 2013: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci., 6, 608–612. doi: 10.1038/ngeo1863
[14] Gaube, P., D. B. Chelton, P. G. Strutton, et al., 2013: Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. J. Geophys. Res. Oceans, 118, 6349–6370. doi: 10.1002/2013JC009027
[15] Gaube, P., D. B. Chelton, R. M. Samelson, et al., 2015: Satellite observations of mesoscale eddy-induced Ekman pumping. J. Phys. Oceanogr., 45, 104–132. doi: 10.1175/JPO-D-14-0032.1
[16] Greaser, S. R., B. Subrahmanyam, C. B. Trott, et al., 2020: Interactions between mesoscale eddies and synoptic oscillations in the Bay of Bengal during the strong monsoon of 2019. J. Geophys. Res. Oceans, 125, e2020JC016772. doi: 10.1029/2020JC016772
[17] Hashizume, H., S.-P. Xie, W. T. Liu, et al., 2001: Local and remote atmospheric response to tropical instability waves: A global view from space. J. Geophys. Res. Atmos., 106, 10,173–10,185. doi: 10.1029/2000JD900684
[18] Henrick, R. F., M. J. Jacobson, W. L. Siegmann, et al., 1979: Use of analytical modeling and limited data for prediction of mesoscale eddy properties. J. Phys. Oceanogr., 9, 65–78. doi: 10.1175/1520-0485(1979)009<0065:UOAMAL>2.0.CO;2
[19] Hooker, S. B., and D. B. Olson, 1984: Center of mass estimation in closed vortices: A verification in principle and practice. J. Atmos. Ocean. Technol., 1, 247–255. doi: 10.1175/1520-0426(1984)001<0247:COMEIC>2.0.CO;2
[20] Liang, Z. L., Q. Xie, L. L. Zeng, et al., 2018: Role of wind forcing and eddy activity in the intraseasonal variability of the barrier layer in the South China Sea. Ocean Dyn., 68, 363–375. doi: 10.1007/s10236-018-1137-9
[21] Liu, H. Y., W. B. Li, S. M. Chen, et al., 2018: Atmospheric response to mesoscale ocean eddies over the South China Sea. Adv. Atmos. Sci., 35, 1189–1204. doi: 10.1007/s00376-018-7175-x
[22] Liu, H. Y., S. M. Chen, W. B. Li, et al., 2019: Atmospheric response to oceanic cold eddies west of Luzon in the northern South China Sea. Atmosphere, 10, 255. doi: 10.3390/atmos10050255
[23] Liu, X., P. Chang, J. Kurian, et al., 2018: Satellite-observed precipitation response to ocean mesoscale eddies. J. Climate, 31, 6879–6895. doi: 10.1175/JCLI-D-17-0668.1
[24] Liu, Y. J., G. Chen, M. Sun, et al., 2016: A parallel SLA-based algorithm for global mesoscale eddy identification. J. Atmos. Ocean. Technol., 33, 2743–2754. doi: 10.1175/JTECH-D-16-0033.1
[25] Liu, Y. J., L. S. Yu, and G. Chen, 2020: Characterization of sea surface temperature and air–sea heat flux anomalies associated with mesoscale eddies in the South China Sea. J. Geophys. Res. Oceans, 125, e2019JC015470. doi: 10.1029/2019JC015470
[26] Ma, J., H. M. Xu, C. M. Dong, et al., 2015: Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos., 120, 6313–6330. doi: 10.1002/2014JD022930
[27] Nof, D., 1985: On the ellipticity of isolated anticyclonic eddies. Tellus, 37A, 77–86. doi: 10.3402/tellusa.v37i1.11656
[28] O’Neill, L. W., D. B. Chelton, and S. K. Esbensen, 2010a: The effects of SST-induced surface wind speed and direction gradients on midlatitude surface vorticity and divergence. J. Climate, 23, 255–281. doi: 10.1175/2009JCLI2613.1
[29] O’Neill, L. W., S. K. Esbensen, N. Thum, et al., 2010b: Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J. Climate, 23, 559–581. doi: 10.1175/2009JCLI2662.1
[30] Park, K.-A., and P. C. Cornillon, 2002: Stability-induced modification of sea surface winds over Gulf Stream rings. Geophys. Res. Lett., 29, 2211. doi: 10.1029/2001GL014236
[31] Park, K.-A., P. Cornillon, and D. L. Codiga, 2006: Modification of surface winds near ocean fronts: Effects of Gulf Stream rings on scatterometer (QuikSCAT, NSCAT) wind observations. J. Geophys. Res. Oceans, 111, C03021. doi: 10.1029/2005JC003016
[32] Putrasahan, D. A., A. J. Miller, and H. Seo, 2013: Isolating mesoscale coupled ocean–atmosphere interactions in the Kuroshio Extension region. Dyn. Atmos. Oceans, 63, 60–78. doi: 10.1016/j.dynatmoce.2013.04.001
[33] Shan, H. X., and C. M. Dong, 2019: Atmospheric responses to oceanic mesoscale eddies based on an idealized model. Int. J. Climatol., 39, 1665–1683. doi: 10.1002/joc.5908
[34] Shi, R., J. Chen, X. Y. Guo, et al., 2017: Ship observations and numerical simulation of the marine atmospheric boundary layer over the spring oceanic front in the northwestern South China Sea. J. Geophys. Res. Atmos., 122, 3733–3753. doi: 10.1002/2016JD026071
[35] Skyllingstad, E. D., D. Vickers, L. Mahrt, et al., 2007: Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound.-Layer Meteor., 123, 219–237. doi: 10.1007/s10546-006-9127-8
[36] Small, R. J., S. P. deSzoeke, S. P. Xie, et al., 2008: Air–sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans, 45, 274–319. doi: 10.1016/j.dynatmoce.2008.01.001
[37] Tian, F. L., D. Wu, L. M. Yuan, et al., 2020: Impacts of the efficiencies of identification and tracking algorithms on the statistical properties of global mesoscale eddies using merged altimeter data. Int. J. Remote Sens., 41, 2835–2860. doi: 10.1080/01431161.2019.1694724
[38] Wang, Q., L. L. Zeng, J. Chen, et al., 2020: The linkage of Kuroshio intrusion and mesoscale eddy variability in the northern South China Sea: Subsurface speed maximum. Geophys. Res. Lett., 47, e2020GL087034. doi: 10.1029/2020GL087034
[39] Wentz, F. J., L. Ricciardulli, C. Gentemann, et al., 2013: Remote sensing systems Coriolis WindSat environmental suite on 0.25 deg grid, version 7.0.1. Remote Sensing Systems, Santa Rosa, CA. Available online at https://www.remss.com/missions/windsat/.
[40] Xie, S.-P., 2004: Satellite observations of cool ocean–atmosphere interaction. Bull. Amer. Meteor. Soc., 85, 195–208. doi: 10.1175/BAMS-85-2-195
[41] Xing, T., and Y. K. Yang, 2021: Three mesoscale eddy detection and tracking methods: Assessment for the South China Sea. J. Atmos. Ocean. Technol., 38, 243–258. doi: 10.1175/JTECH-D-20-0020.1
[42] Xu, C., X. M. Zhai, and X.-D. Shang, 2016: Work done by atmospheric winds on mesoscale ocean eddies. Geophys. Res. Lett., 43, 12,174–12,180. doi: 10.1002/2016GL071275
[43] Yang, H. Y., P. Chang, B. Qiu, et al., 2019: Mesoscale air–sea interaction and its role in eddy energy dissipation in the Kuroshio Extension. J. Climate, 32, 8659–8676. doi: 10.1175/JCLI-D-19-0155.1
[44] Yang, Y. K., D. X. Wang, Q. Wang, et al., 2019: Eddy-induced transport of saline Kuroshio water into the northern South China Sea. J. Geophys. Res. Oceans, 124, 6673–6687. doi: 10.1029/2018JC014847
[45] Zeng, L. L., and D. X. Wang, 2017: Seasonal variations in the barrier layer in the South China Sea: Characteristics, mechanisms and impact of warming. Climate Dyn., 48, 1911–1930. doi: 10.1007/s00382-016-3182-8
[46] Zeng, L. L., Y. Du, S.-P. Xie, et al., 2009: Barrier layer in the South China Sea during summer 2000. Dyn. Atmos. Oceans, 47, 38–54. doi: 10.1016/j.dynatmoce.2008.08.001