[1] Blumberg, W. G., K. T. Halbert, T. A. Supinie, et al., 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc., 98, 1625–1636. doi: 10.1175/BAMS-D-15-00309.1
[2] Chen, X. C., K. Zhao, and M. Xue, 2014: Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data. J. Geophys. Res. Atmos., 119, 12,447–12,465. doi: 10.1002/2014JD021965
[3] Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm identification, tracking, analysis, and nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785–797. doi: 10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
[4] Doswell, C. A. III, H. E. Brooks, and R. A. Maddox, 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560–581. doi: 10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2
[5] Foresti, L., I. V. Sideris, D. Nerini, et al., 2019: Using a 10-year radar archive for nowcasting precipitation growth and decay: A probabilistic machine learning approach. Wea. Forecasting, 34, 1547–1569. doi: 10.1175/WAF-D-18-0206.1
[6] Gagné, D. J. II, A. McGovern, S. E. Haupt, et al., 2017: Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles. Wea. Forecasting, 32, 1819–1840. doi: 10.1175/WAF-D-17-0010.1
[7] Gupta, R., R. Hosfelt, S. Sajeev, et al., 2019: xBD: A dataset for assessing building damage from satellite imagery. Availableonline at https://arxiv.org/abs/1911.09296. Accessedon30December 2021.
[8] Han, L., J. Z. Sun, W. Zhang, et al., 2017: A machine learning nowcasting method based on real-time reanalysis data. J. Geophys. Res. Atmos., 122, 4038–4051. doi: 10.1002/2016JD025783
[9] Hersbach, H., B. Bell, P. Berrisford, et al., 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 1999–2049. doi: 10.1002/qj.3803
[10] Jing, J. R., Q. Li, and X. Peng, 2019: MLC-LSTM: Exploiting the spatiotemporal correlation between multi-level weather radar echoes for echo sequence extrapolation. Sensors, 19, 3988. doi: 10.3390/s19183988
[11] Johnson, J. T., P. L. MacKeen, A. Witt, et al., 1998: The storm cell identification and tracking algorithm: An enhanced WSR-88D algorithm. Wea. Forecasting, 13, 263–276. doi: 10.1175/1520-0434(1998)013<0263:TSCIAT>2.0.CO;2
[12] Lagerquist, R., A. McGovern, and T. Smith, 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 2175–2193. doi: 10.1175/WAF-D-17-0038.1
[13] Leng, L., X. Y. Huang, H. P. Yang, et al., 2012: Recognition and application of Doppler weather radar clear air echoes. Meteor. Sci. Technol., 40, 534–541. (in Chinese) doi: 10.3969/j.issn.1671-6345.2012.04.004
[14] Liu, L. P., L. L. Wu, and Y. M. Yang, 2007: Development of fuzzy-logical two-step ground clutter detection algorithm. Acta Meteor. Sinica, 65, 252–260. (in Chinese) doi: 10.3321/j.issn:0577-6619.2007.02.011
[15] Liu, Y., D. G. Xi, Z. L. Li, et al., 2015: A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach. J. Hydrol., 529, 354–364. doi: 10.1016/j.jhydrol.2015.07.042
[16] Marzban, C., and G. J. Stumpf, 1996: A neural network for tornado prediction based on Doppler radar-derived attributes. J. Appl. Meteor. Climatol., 35, 617–626. doi: 10.1175/1520-0450(1996)035<0617:ANNFTP>2.0.CO;2
[17] Marzban, C., and A. Witt, 2001: A Bayesian neural network for severe-hail size prediction. Wea. Forecasting, 16, 600–610. doi: 10.1175/1520-0434(2001)016<0600:ABNNFS>2.0.CO;2
[18] Mecikalski, J. R., J. K. Williams, C. P. Jewett, et al., 2015: Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 1039–1059. doi: 10.1175/JAMC-D-14-0129.1
[19] Pan, Y., Y. Shen, J. J. Yu, et al., 2015: An experiment of high-resolution gauge-radar-satellite combined precipitation retrieval based on the Bayesian merging method. Acta Meteor. Sinica, 73, 177–186. (in Chinese) doi: 10.11676/qxxb2015.010
[20] Perler, D., and O. Marchand, 2009: A study in weather model output postprocessing: Using the boosting method for thunderstorm detection. Wea. Forecasting, 24, 211–222. doi: 10.1175/2008WAF2007047.1
[21] Rasp, S., P. D. Dueben, S. Scher, et al., 2020: WeatherBench: A benchmark data set for data-driven weather forecasting. J. Adv. Model. Earth Syst., 12, e2020MS002203. doi: 10.1029/2020MS002203
[22] Reichstein, M., G. Camps-Valls, B. Stevens, et al., 2019: Deep learning and process understanding for data-driven Earth system science. Nature, 566, 195–204. doi: 10.1038/s41586-019-0912-1
[23] Russakovsky, O., J. Deng, H. Su, et al., 2015: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., 115, 211–252. doi: 10.1007/s11263-015-0816-y
[24] Shi, X. J., Z. R. Chen, H. Wang, et al., 2015: Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Proceedings of the 28th International Conference on Neural Information Processing Systems, MIT, Montréal, Canada, 802–810.
[25] Shi, X. J., Z. H. Gao, L. Lausen, et al., 2017: Deep learning for precipitation nowcasting: A benchmark and a new model. Proceedings of the 31st International Conference on Neural Information Processing Systems, Curran Associates Inc., Long Beach, CA, USA, 5622–5632.
[26] Sønderby, C. K., L. Espeholt, J. Heek, et al., 2020: MetNet: A neural weather model for precipitation forecasting. Available online at https://arxiv.org/pdf/2003.12140.pdf. Accessedon 30 December 2021.
[27] Su, H., J. Deng, and F.-F. Li, 2012: Crowdsourcing annotations for visual object detection. Available online at http://vision.stanford.edu/pdf/bbox_submission.pdf. Accessedon 30 December 2021.
[28] Sun, J. Z., M. Xue, J. W. Wilson, et al., 2014: Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Amer. Meteor. Soc., 95, 409–426. doi: 10.1175/BAMS-D-11-00263.1
[29] Tan, X., L. P. Liu, and S. R. Fan, 2013: Statistical characteristics of sea clutter and its identification with the CINRAD. Acta Meteor. Sinica, 71, 962–975. (in Chinese) doi: 10.11676/qxxb2013.074
[30] Tang, X. W., J. P. Tang, and X. L. Zhang, 2010: An ingredient-based operational heavy rain quantitative forecast system. J. Nanjing Univ. (Nat. Sci.), 46, 277–283. (in Chinese)
[31] Weber, E., and H. Kané, 2020: Building disaster damage assessment in satellite imagery with multi-temporal fusion. Available online at https://arxiv.org/pdf/2004.05525.pdf. Accessed on 30 December 2021.
[32] Wen, H., L. P. Liu, C. A. Zhang, et al., 2016: Operational evaluation of radar data quality control for ground clutter and electromagnetic interference. J. Meteor. Sci., 36, 789–799. (in Chinese) doi: 10.3969/2015jms.0085
[33] Xiao, Y. J., and L. P. Liu, 2006: Study of methods for interpolating data from weather radar network to 3-D grid and mosaics. Acta Meteor. Sinica, 64, 647–657. (in Chinese) doi: 10.3321/j.issn:0577-6619.2006.05.011
[34] Xiao, Y. J., L. P. Liu, and H. P. Yang, 2008: Technique for generating hybrid reflectivity field based on 3-D mosaicked reflectivity of weather radar network. Acta Meteor. Sinica, 66, 470–473. (in Chinese) doi: 10.3321/j.issn:0577-6619.2008.03.016
[35] Ying, M., W. Zhang, H. Yu, et al., 2014: An overview of the China meteorological administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 287–301. doi: 10.1175/JTECH-D-12-00119.1
[36] Yu, X. D., and Y. G. Zheng, 2020: Advances in severe convection research and operation in China. J. Meteor. Res., 34, 189–217. doi: 10.1007/s13351-020-9875-2
[37] Yu, X. D., X. P. Yao, T. N. Xiong, et al., 2006: The Principle and Operational Application of Doppler Weather Radar. China Meteorological Press, Beijing, 185 pp. (in Chinese)
[38] Zhang, W., L. Han, J. Z. Sun, et al., 2019: Application of multi-channel 3D-cube successive convolution network for convective storm nowcasting. 2019 IEEE International Conference on Big Data (Big Data), IEEE, Los Angeles, CA, USA, 1705–1710.
[39] Zhang, X. L., S. Y. Tao, and J. H. Sun, 2010: Ingredients-based heavy rainfall forecasting. Chinese J. Atmos. Sci., 34, 754–766. (in Chinese)
[40] Zhang, X. L., Y. Chen, and T. Zhang, 2012: Meso-scale convective weather analysis and severe convective weather forecasting. Acta Meteor. Sinica, 70, 642–654. (in Chinese) doi: 10.11676/qxxb2012.052
[41] Zhang, X. L., J. H. Sun, Y. G. Zheng, et al., 2020: Progress in severe convective weather forecasting in China since the 1950s. J. Meteor. Res., 34, 699–719. doi: 10.1007/s13351-020-9146-2
[42] Zhou, K. H., Y. G. Zheng, B. Li, et al., 2019: Forecasting different types of convective weather: A deep learning approach. J. Meteor. Res., 33, 797–809. doi: 10.1007/s13351-019-8162-6
[43] Zhou, K. H., Y. G. Zheng, W. S. Dong, et al., 2020: A deep learning network for cloud-to-ground lightning nowcasting with multisource data. J. Atmos. Oceanic Technol., 37, 927–942. doi: 10.1175/JTECH-D-19-0146.1